Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.3, 313-321, 2017
알긴산 나트륨을 이용한 유산균 캡슐화의 상업화 공정 개발
Development of a Commercial Process for Micro-Encapsulation of Lactic Acid Bacteria Using Sodium Alginate
바이오 고분자인 알긴산 나트륨(Sodium Alginate)을 이용하여 기존의 방법에 비해 생산성이 우수한 슐화의 상업화 공정을 개발하고자 하였다. 또한, 동일 공정으로 키토산을 알긴산과 함께 캡슐화하여 알긴산 나륨으로 캡슐화 된 유산균과 비교하였다. 유산균 캡슐화의 상업화 공정의 주요 공정은 캡슐화 후 기존의 동결건조 신에 본 연구진이 개발한 생산성이 우수한 유동화 건조 방법에 의하여 건조시간을 15~24이상 단축할 수 있었지만, 생균수는 동결건조와 유동층 건조의 비율이 1:0.75로 동결건조 방법이 좋았다. 하지만 건조에 드는 비용과 시간을 고려 해 볼 때 유동층 건조 방법으로 상업화 공정이 가능함을 확인할 수 있었다. Chitosan-alginate 캡슐은 알긴산 슘캡슐과 생균수를 비교하였을 때, 알긴산을 이용한 캡슐은 희석배수 10-9 , 즉 약 1×10 9 마리 이상의 균이 존재하고,키토산을 이용한 캡슐은 희석배수 10-3, 즉 약 1×10 3 마리의 균이 존재함을 확인 할 수 있었다. 본 연구의 기술로 조된 유산균 캡슐은 pH 4.65, 6.01에서 96시간 이상 동안 안정하였지만, pH 7.07, 8.35에서는 1시간 이내에 모두 붕되었다. 이는 유산균 캡슐이 위산에서 안정성을 보이고 pH 7이상을 띠는 소화기관인 소장과 대장에서는 쉽게 붕가 일어날 수 있음을 알 수 있었다.
We aimed to develop commercialization process of encapsulation which is superior in productivity compared to existing methods by using sodium alginate. Also, in the same process, sodium alginate with chitosan was used to encapsulate lactic acid bacteria with the same process and then the viable cell counts of the two encapsulated lactic acid bacteria were compared. As a test result of the fluidized drying process developed by the present researchers, it was found that the drying time was shortened by 15 to 20 hours compared to the freeze drying method, but the number of viable lactic acid bacteria was about 75% as compared with freeze drying. However, considering the cost and time of drying, it can be confirmed that the commercialization process is possible by the fluidized bed drying method. When the number of viable cells of Ca-alginate capsule and Chitosan-alginate capsule were compared, it was confirmed that there were about 1×109 or more bacteria in the former and about 1×103 in the latter. The lactic acid bacterium capsules prepared by the present technique were stable for 96 hours or more at pH 4.65 and 6.01, but disappeared within 1 hour at pH 7.07 and 8.35. This suggests that the disintegration of lactic acid bacteria can be easily occurred in small and large intestine.
[References]
  1. Krasaekoopt W, Bhandari B, Deeth H, International Dairy Journal, 13, 3, 2003
  2. Gandomi H, Abbaszadeh S, Misaghi A, Bokaie S, Noori N, Food Science and Technology, 69, 365, 2016
  3. Chavarri M, Maranon I, Ares R, Ibanez F, Marzo F, Villarin MC, International Journal of Food Microbiology, 142, 185, 2010
  4. Hyndman CL, Groboillot AF, Poncelet D, J. Chem. Technol. Biotechnol., 56, 259, 1993
  5. LARISCH BC, PONCELET D, CHAMPAGNE CP, NEUFELD RJ, J. Microencapsul., 11(2), 189, 1994
  6. Jankowski T, Zielinska M, Wysakowska A, Biotechnol. Tech., 11, 31, 1997
  7. Grant GT, Morris ER, Rees DA, Peter JC, Smith DT, Febs Lett., 32, 1, 1973
  8. Kang JY, Seo SH, Bull. K. H. Pharma. Sci., 26, 83, 1998
  9. Jarudilokkul S, Tongthammachat A, Boonamnuayvittaya V, Korean J. Chem. Eng., 28(5), 1247, 2011
  10. Sung IK, Song JY, Kim BS, Korean Chem. Eng. Res., 49(4), 475, 2011
  11. Devi MG, Dutta S, Hinai ATA, Feroz S, Korean J. Chem. Eng., 32(1), 118, 2015
  12. Walker WA, Duffy LC, “Diet and Bacterial Colonization: Role of Probiotics and Probiotics,” Elsevier Science Inc, (1998).
  13. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M, Biomaterials, 26, 3919, 2005
  14. Moon HS, Food Industry and Nutrition, 6, 71, 2001
  15. Chung DH, “The Science of Lactobacillus,” Shinil Co., (2004).
  16. Jung HK, Kim ER, Juhn SL, J. Korean Dairy Technol. Sci., 19, 125, 2001
  17. Saavedra JM, Bauman NA, Oung I, Perman JA, Tolken RH, The Lancet, 344, 1046, 1994