Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.3, 296-301, 2017
고분자전해질연료전지에서 폴리이미드 강화 sPEEK막 MEA의 내구성
Durability of MEA Using sPEEK Membrane Reinforced with Poly Imide in PEMFC
최근에 저가의 고분자 전해질 연료전지(Proton Exchange Membrane Fuel Cells, PEMFC)용 비불계 전해질 막 연구 개발이 활발히 진행되고 있다. 본 연구에서는 sulfonated poly (ether ether ketone) (sPEEK) 막의 내성을 증가시키기 위해 PI 지지체를 이용한 강화 막을 제조하였다. 단일(비강화) 막전극합체(MEA)와 강화막 MEA의 내성을 시험하기 위해 열화 가속화 기법을 이용하여 MEA 열화 실험을 진행하였다. 열화 전과 후에 I-V 분극곡선, 수소과도, 전극 활성 면적, 막 저항과 부하 전달 저항을 측정하여 열화 전과 후를 비교하였다. 그 결과, 강화 MEA가 단일MEA에 비해 수소투과전류밀도가 낮으며, 내구성이 높음을 확인하였다. 특히 열화 후 강화 MEA에서는 단일 MEA 서 나타난 쇼트 현상이 나타나지 않았다.
Recently, there are many efforts focused on development of more economical non fluorinated membranes for PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, sulfonated poly (ether ether ketone) (sPEEK) membrane reinforced with poly imide was made to enhance of membrane durability. In order to test durability of single (un-reinforced) membrane and reinforced membrane MEA (Membrane and Electrode Assembly), degradation accelerated stress test was used. Before and after degradation, I-V polarization curve, hydrogen crossover current, electrochemical surface area, membrane resistance and charge transfer resistance were measured. As a result of experiments, hydrogen crossover current of reinforced MEA was lower than that of single MEA, therefor durability of reinforced MEA was higher than that of single MEA. There was not especially short phenomena in reinforced MEA after degradation accelerated stress test.
[References]
  1. Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191, 2005
  2. Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59, 2002
  3. Wilkinson DP, St-Pierre J, in: Vielstich W, Gasteiger HA. Lamm A, (Eds.). Chichester, England, 611-612(2003).
  4. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872, 1993
  5. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127, 2004
  6. Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31, 1838, 2006
  7. Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543, 2003
  8. Park CH, Lee CH, Guiver MD, Lee YM, Prog. Polym. Sci, 36, 1443, 2011
  9. Jeong JJ, Shin YC, Lee MS, Lee DH, Na IC, Lee H, Park KP, Korean Chem. Eng. Res., 51(5), 556, 2013
  10. Gil M, Ji XL, Li XF, Na H, Hampsey JE, Lu YF, J. Membr. Sci., 234(1-2), 75, 2004
  11. Zhong SL, Liu CG, Dou ZY, Li XF, Zhao CJ, Fu TZ, Na H, J. Membr. Sci., 285(1-2), 404, 2006
  12. Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Wang KP, Kaliaguine S, J. Membr. Sci., 229(1-2), 95, 2004
  13. Lawrence J, Yamaguchi T, J. Membr. Sci., 325(2), 633, 2008
  14. Colicchio I, Wen F, Keul H, Simon U, Moeller M, J. Membr. Sci., 326(1), 45, 2009
  15. Zhao CJ, Li XF, Wang Z, Dou ZY, Zhong SL, Na H, J. Membr. Sci., 280(1-2), 643, 2006
  16. Lee HR, Lee SH, Hwang BC, Na IC, Lee JH, Oh SJ, Park KP, Korean Chem. Eng. Res., 54(2), 181, 2016
  17. Lee HR, Lee SH, Hwang BC, Na IC, Lee JH, Oh SJ, Park KP, Korean Chem. Eng. Res., 54(3), 305, 2016
  18. Jeong J, Song M, Chung H, Na I, Lee J, Lee H, Park K, Korean Chem. Eng. Res., 52(5), 558, 2014
  19. Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68, 2013
  20. Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487, 2011
  21. Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P, J. Electrochem. Soc., 141(10), 2659, 1994