Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.1, 115-120, 2017
시료용액의 특성에 따른 고정화된 단일벽 탄소나노튜브의 전기적 거동
Electrical Property of Immobilized SWNTs Bundle as Bridge between Electrodes in Nanobiosensor Depending on Solvent Characteristics
현재 세계적인 이슈가 되고 있는 나노과학과 기술은 탄소나노튜브(CNTs)를 기반으로 한 바이오센서 성능 향상에 주력하고 있다. 다양한 기능성을 가진 CNTs는 높은 안정성과 바이오 수용체와 같은 생체물질과의 높은 적합성으로 이를 이용한 바이오 전극 기술에 힘입어 의학, 식품 및 환경에서 이슈가 되는 물질들을 검출하기 위한 산업적 응용 연구가 주목받고 있다. 본 연구에서는 이러한 CNTs를 이용한 전기화학적 바이오센서에 있어서 시료가 액체 상태로 검출이 예상되는데 그 시료의 화학적 특성에 따른 금 전극 사이에 고정화된 CNTs의 전자전달현상을 조사하였다. 그 결과, 시료가 극성인 경우와 무극성인 경우 고정화된 CNTs의 전자전달 현상이 다르게 나타났으며, 극성의 세기가 증가할수록 전자의 이동에 방해를 받는 것으로 확인되었다. 이는 CNTs의 양끝에 존재하는 극성 작용기와의 상호작용에 의한 것으로서 센서 디바이스 전체를 시료 용액에 침투시켜 전자이동을 관찰한 결과와 달리 안정적으로 저항값을 나타내는 것으로 확인되었다. 향후 민감도가 높은 CNTs 기반 나노바이오센서 개발 시 시료의 효과적인 전처리 공정에서 이러한 용매의 극성을 고려한 최적화 연구가 필요하다.
In recent, it is worldwide issued that nanoscale science and technology as a solution have supported to increase the sensing performance in carbon nanotube based biosensor system. Containing material chemistry in various nanostructures has formed their high potentials for stabilizing and activating biocatalyst as a bioreceptor for medical, food contaminants, and environmental detections using electrode modification technologies. Especially, the large surface area provides the attachment of biocatalysts increasing the biocatalyst loading. Therefore, nano-scale engineering of the biocatalysts have been suggested to be the next stage advancement of biosensors. Here, we would like to study the electrical mechanism depending on the exposure methods (soaking or dropping) to the sample solution to the assembled carbon nanotubes (CNTs) on the gold electrodes of biosensor for a simple and highly sensitive detection. We performed various experiments using polar and non-polar solutions as sampling tests and identified electrical response of assembled CNTs in those solutions.
[References]
  1. Iijima S, Nature, 354, 56, 1991
  2. Swamy BEK, Venton BJ, Analyst, 132, 876, 2007
  3. Lin Y, Zhu N, Yu P, Su L, Mao L, Anal. Chem., 81, 2067, 2009
  4. Chung Y, Kwon Y, Korean Chem. Eng. Res., 53(6), 802, 2015
  5. Bardhan NM, Ghosh D, Belcher AM, Nat. Commun., 5, 4918, 2014
  6. Lee J, Shin HY, Kang SW, Park C, Kim SW, Biosens. Bioelectron., 26, 2685, 2011
  7. Kim S, Park S, Kwon J, Ha KR, Korean Chem. Eng. Res., 54(3), 410, 2016
  8. Gultepe E, Nagesha D, Casse BDF, Selvarasah S, Busnaina A, Sridhar S, Nanotechnology, 19(45), 455309, 2008
  9. Mureau N, Mendoza E, Silva SRP, Hoettges KF, Hughes MP, Appl. Phys. Lett., 88, 243109, 2006
  10. Monica AH, Papadakis SJR, Osiander, Paranjape M, Nanotechnology, 19(8), 085303, 2008
  11. Stokes P, Khondaker SI, Nanotechnology, 19(17), 175202, 2008
  12. Xiao Z, Camino FE, Nanotechnology, 20(13), 135205, 2009
  13. Yuen FLY, Zak G, Waldman SD, Docoslis A, Cytotechnology, 56, 9, 2008
  14. Zhou RH, Wang P, Chang HC, Electrophoresis, 27(7), 1376, 2006
  15. Lim JH, Phiboolsirichit N, Mubeen S, Deshusses MA, Mulchandani A, Myung NV, Nanotechnology, 21, 1, 2010
  16. Bartolomeo AD, Rinzan M, Boyd AK, Yang Y, Guadagno L, Giubileo F, Barbara P, Nanotechnology, 21(11), 115204, 2010
  17. Wong SS, Woolley AT, Joselevich E, Cheung CL, Lieber CM, J. Am. Chem. Soc., 120(33), 8557, 1998
  18. Li SH, Li HJ, Wang XB, Song YL, Liu YQ, Jiang L, Zhu DB, J. Phys. Chem. B, 106(36), 9274, 2002
  19. Wang HL, Miyauchi M, Takata T, J. Periodontal. Res., 37, 340, 2002
  20. Kalka C, Masuda H, Takahashi T, Wiltrud M, Kalka M, Marcy S, Marianne K, Tong L, Jeffrey MI, Takayuki A, Proc. Natl. Acad. Sci. USA., 97, 3422, 2000
  21. Moldenhauer A, Nociari MM, Dias S, Lalezari P, Moore MA, Vox Sang, 84, 228, 2003
  22. Pollreisz A, Assinger A, Hacker S, Hoetzenecker K, Schmid W, Lang G, Wolfsberger M, Steinlechner B, Bielek E, Lalla E, Klepetko W, Volf I, Ankersmit HJ, Br J. Dermatol., 159, 578, 2008
  23. Jing R, Wang H, Jiang S, Zhang Z, Lab. Med., 39, 661, 2008