Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.1, 107-114, 2017
황화수소 피독이 고분자전해질 연료전지에 미치는 영향과 회복기법
H2S Poisoning Effect and Recovery Methods of Polymer Electrolyte Membrane Fuel Cell
고분자전해질 연료전지(PEMFC: polymer electrolyte membrane fuel cell)는 일산화탄소(CO)나 황화수소(H2S)가 포함된 연료가 주입될 경우 성능이 저하된다. 일반적으로 멀캅탄 계열의 부취제가 첨가된 탄화수소를 개질하여 생성된 수소에는 미량의 황화수소가 포함되어 있다. 본 연구에서는 황화수소를 수소에 첨가하여 anode에 주입하였을 경우에 연료전지 성능에 미치는 영향을 파악하고, 3가지 다른 회복방법인 순수 수소 주입법, 전위 순환법과 물 순환법을 적용한 경우의 회복률을 비교하여 보았다. PEMFC의 성능은 전기화학적 방법인 polarization curve, electrochemical impedance spectroscopy (EIS)와 cyclic voltammetry (CV)를 사용하여 분석하였다. 피독에 대한 회복방법인 순수 수소 주입법과 전위 순환법을 사용한 경우에는 회복률이 적었고, 물 순환법을 사용한 경우에는 초기에 대비하여 약 95% 이상 성능이 회복된 것을 확인하였다. 직접적으로 피독에 노출된 anode에 물을 흘린 경우의 성능회복률이 높았으며, cathode에 흘린 경우에도 물의 crossover에 의한 효과로 전위 순환법보다 우수한 회복률을 보였다. 이러한 연구결과로부터 황화수소 피독에 대한 회복기법을 구축함으로서 연료전지의 내구성을 향상시킬 수 있고, 불순물이 미량 함유된 저가 수소의 사용을 가능하게 함으로서 연료전지 보급에도 기여할 수 있을 것이다.
The performance of polymer electrolyte membrane fuel cell (PEMFC) could be deteriorated when fuel contains contaminants such as carbon monoxide (CO) or hydrogen sulfide (H2S). Generally, H2S is introduced in hydrogen by steam reforming of hydrocarbon which has mercaptan as odorant. H2S poisoning effect on PEMFC performance was examined on this study. Pure hydrogen injection, voltage cycling and water circulation methods were compared as performance recovery methods. The PEMFC performance was analyzed using electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Pure hydrogen injection and voltage cycling methods showed low recovery ratio, however, water circulation method showed high recovery ratio over 95%. Because anode was directly poisoned by H2S, anode water circulation showed higher recovery ratio compared to the other methods. Water circulation method was developed to recover PEMFC performance from H2S poisoning. This method could contribute to PEMFC durability and commercialization.
[References]
  1. Vishnyakov VM, Vacuum, 80(10), 1053, 2006
  2. Ralph TR, Platinum Met. Rev., 43(1), 14, 1999
  3. Appleby AJ, Sci. Am., 281, 74, 1999
  4. Lloyd AC, Sci. Am., 281, 80, 1999
  5. Dyer CK, Sci. Am., 281, 88, 1999
  6. Lee DY, Hwang SW, Int. J. Hydrog. Energy, 33(11), 2790, 2009
  7. Yu XW, Ye SY, J. Power Sources, 172(1), 145, 2007
  8. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127, 2004
  9. Stevens DA, Dahn JR, Carbon, 43, 179, 2005
  10. Jeong J, Song M, Chung H, Na I, Lee J, Lee H, Park K, Korean Chem. Eng. Res., 52(5), 558, 2014
  11. Park S, Popov BN, Korean J. Chem. Eng., 31(8), 1384, 2014
  12. Park SM, O’Brien TJ, “Effects of Several Trace Contaminants on Fuel Cell Performance,” Technical Report (# DOE/METC/RI-80/16), Department of Energy, Morgantown, WV, USA, 1979.
  13. Hayter PR, Mitchell P, Dams RAJ, Dudfield C, Gladding N, “The Effect of Contaminants in the Fuel and Air Streams on the Performance of a Solid Polymer Fuel Cell,” Contract Report(ETSUF/02/00126/REP), Wellman CJB Limited, Portsmouth, UK,1997.
  14. Lee H, Song J, Kim K, Kim S, Ahn B, Lim T, Park K, Korean Chem. Eng. Res., 48(3), 311, 2010
  15. Lee H, Song J, Kim K, Kim S, Ahn B, Lim T, Park K, Korean Chem. Eng. Res., 49(1), 15, 2011
  16. Murthy M, Esayian M, Lee WK, Van Zee JW, J. Electrochem. Soc., 150(1), A29, 2003
  17. Giorgi L, Pozio A, Bracchini C, Giorgi R, Turtu S, J. Appl. Electrochem., 31(3), 325, 2001
  18. Fuel Cell Handbook, 5th ed. US Department of Energy, West Virginia, 2000.
  19. Loucka T, J. Electroanal. Chem., 31(2), 319, 1971
  20. Contractor AQ, Lal H, J. Electroanal. Chem., 96(2), 175, 1979
  21. Mohtadi R, Lee WK, Van Zee JW, Appl. Catal. B: Environ., 56(1-2), 37, 2005
  22. Shi WY, Yi BL, Hou M, Jing FN, Yu HM, Ming PW, J. Power Sources, 164(1), 272, 2007
  23. Shi W, Yi B, Hou M, Shao Z, J. Hydrol. Eng., 32(17), 4412, 2007
  24. Knight S, Jia N, Chuy C, Zhang J, “Fuel Cell Seminar 2005: Fuel Cell Progress,” Challenges and Markets, Palm Springs, California (2005).
  25. Shah AA, Walsh FC, J. Power Sources, 185(1), 287, 2008
  26. Li LY, King DL, Catal. Today, 116(4), 537, 2006
  27. Pillay D, Johannes MD, Surface Science, 602, 2752, 2008
  28. Mohtadi R, Lee WK, Cowan S, Van Zee JW, Murthy M, Electrochem. Solid State Lett., 6(12), A272, 2003
  29. Sim WJ, Kim DW, Choi SH, Kim KJ, Ahn HG, Jung MC, Park K, Korean Chem. Eng. Res., 46(2), 286, 2008
  30. Mohtadi R, Lee WK, Van Zee JW, J. Power Sources, 138(1-2), 216, 2004
  31. Kakati BK, Kucernak RJ, J. Power Sources, 252, 317, 2014