Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.1, 74-79, 2017
Chlorella saccharophila 배양 최적화 및 유용물질의 생산
Optimization of Chlorella saccharophila Cultivation and Useful Materials Production
본 연구에서는 Chlorella saccharophila의 배양을 통하여 바이오에너지 자원을 대량으로 확보하고자 배지 최적화 실험을 진행하였다. 최적화 인자로는 배양 형태, 초기 접종량, 탄소원 종류 및 농도, 질소원 종류 및 농도, 배양시간이다. 실험 결과, 배양 형태는 광원과 외부탄소원을 모두 공급하는 mixotrophic 배양이 적절하였다. 초기 접종량은 3% (v/v), 탄소원은 glucose 30 g/L, 질소원은 NaNO3 0.95 g/L를 첨가하는 것이 우수하였다. 최적 배지 조건으로 배양한 결과, oil의 함량은 12일에서 가장 높았으나, 회수되는 C. saccharophila의 biomass양과 chlorophyll의 양은 10일에서 가장 높았다. 위의 결과는 미세조류의 배지 최적화를 통하여 대량배양을 위한 기초자료로 사용될 수 있으리라 판단된다.
In this study, the optimization of several factors for Chlorella saccharophila cultivation was investigated. The studied factors were medium type, culture type, inoculum size, sugar/nitrogen source type and concentrations. As a result, the optimized conditions for C. saccharophila cultivation were found to be the best at 3% (v/v) inoculum, 30 g/L glucose and 0.95 g/L NaNO3 under mixotrophic culture. Under the optimized condition, the content of oil was high at 12 day, whereas, the amount of biomass and chlorophyll were high at 10 day.
[References]
  1. Demirbas A, Prog. Energy Combust. Sci., 33(1), 1, 2007
  2. Kamm B, Gruber PR, Kamm M, “Biorefineries : Industrial Processes and Products,” WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim(2008).
  3. Werpy T, Petersen G, “Top Value Added Chemicals from Biomass, volume I : Results of Screening for Potential Candidates from Sugars and Synthesis Gas,” The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL)(2004).
  4. Jeong GT, Microbiol. Biotechnol. Lett., 42, 177, 2014
  5. Hamasaki A, Shioji N, Ikuta Y, Hukuda Y, Makita T, Hirayama K, Matuzaki H, Tukamoto T, Sasaki S, Biochem Biotechnol., 45, 799, 1994
  6. Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833, 2008
  7. Kang S, Kim S, Lee J, Korean J. Chem. Eng., 32(7), 1377, 2015
  8. Choi K, Lee J, Jo J, Shin S, Kim J, Korean Chem. Eng. Res., 54(3), 310, 2016
  9. Hashumoto S, Furukawa K, J. Fermt. Bioeng., 67, 62, 1989
  10. Banat J, Puskas K, Esen I, Al-Dahar R, Biol. Wastes., 32, 265, 1990
  11. Wilde EW, Benemann JR, Biotechnol. adv., 11, 781, 1993
  12. Kandah M, Al-Rub FAA, Al-Dabaydeh N, Adsorpt. Sci. Technol., 21, 501, 2003
  13. Lee JY, KSBB J., 4, 183, 2010
  14. Ra CH, Kang CH, Jung JH, Jeong GT, Kim SK, Bioresour. Technol., 212, 254, 2016
  15. Cho SJ, Lee DH, Luong TT, Park SR, Oh YK, Lee TH, J. Microbiol. Biotechnol., 21, 1073, 2011
  16. Lee HS, Jeon SG, Oh YK, Kim KH, Chung SH, Na JG, Yeo SD, Korean Chem. Eng. Res., 50(4), 672, 2012
  17. Singh D, Puri M, Wilkens S, Mathur AS, Tuli DK, Barrow CJ, Bioresour. Technol., 143, 308, 2013
  18. Tan KC, Johns RM, Hydrobiologia, 215, 13, 1991
  19. Tompkins J, Deville MM, Day JG, Turner MF, The Culture Collection of Algae and Protozoa. Ambleside, Institute of Freshwater Ecology, 204(1995).
  20. Andersen RA, Berges JA, Harrison JP, Watanabe MM, in Andersen RA (Ed.), Algal culturing techniques, Burlington Elsevier San Diego and London, Academic Press, 429-532(2005).
  21. Kim AR, Kim HS, Park MR, Kim SK, Jeong GT, Microbiol. Biotechnol. Lett., 44, 522, 2016
  22. Folch J, Lees M, Sloane-Stanley GH, J Biochem., 226, 497, 1957
  23. Kim JK, Park HJ, Kim YH, Joo H, Lee SH, Lee JH, J. Korean Ind. Eng. Chem., 24, 155, 2013
  24. Liang YN, Sarkany N, Cui Y, Biotechnol. Lett., 31(7), 1043, 2009
  25. Heidari M, Kariminia HR, Shayegan J, Process Saf. Environ. Protect., 104, 111, 2016
  26. Nigam S, Rai MP, Sharma R, Am. J. Biochem. Biotechnol., 7(3), 124, 2011
  27. Ra CH, Kang CH, Jung JH, Jeong GT, Kim SK, Bioresour. Technol., 218, 1279, 2016