Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.1, 27-33, 2017
질량분석기를 활용한 효과적 이황화결합 분석법 개발
Mass Spectrometry-Based Strategy for Effective Disulfide Bond Identification
이황화결합(Disulfide Bond)은 다양한 생리학적 혹은 병리학적 과정 중 단백질번역 후 변형(Post-Translational Modifications) 과정 중에 형성된다. 그러므로 이황화결합에 대한 정보는 단백질의 화학적 구조를 보다 종합적으로 이해하는데 매우 중요한 일이다. 질량분석기를 이용한 이황화결합 분석은 매우 효과적이며, 현재까지 질량 분석기를 활용한 다양한 이황화결합 분석법들이 개발되었다. 그러나, 대부분의 이황화결합 분석법의 경우, 이황화결합 분석 시 자유-시스테인잔기(Free Thiol Residues) 분석을 고려하지 않았다. 본 연구에서는 이황화결합에 관여하는 시스테인/자유-시스테인에 초점을 두고 총 4단계(1단계: 아미노산 서열을 통한 이황화결합 가능 부위를 예측, 2단계: 자유시스테인의 존재 유무의 확인, 3단계: 질량 분석기를 활용한 이황화결합 분석, 4단계: 이황화결합 분석법의 종합적인 검증)의 분석법을 개발하였다. 나아가, 본 연구에서 개발된 분석 기법을 실제 휴먼 유래 재조합 단백질(HRPE1)에 적용함으로써 개발된 이황화결합 분석법의 효용성을 확인하였다. HRPE1의 경우, 총 6개의 이황화결합(Inter-chain 형태: 1, Intra-chain 형태: 5)으로 구성된 것을 최종 확인하였다.
The determination of disulfide bonds is important for comprehensive understanding of the chemical structure of protein. So far, many strategies for the disulfide bond analysis have been suggested in terms of speed and sensitivity. However, most of these strategies have not considered free thiol residues in the target protein in the process of determining the disulfide bond. We suggested the strategy which was composed of four steps for the identification of disulfide bonds; the first step was the prediction of possible disulfide bonds, the second step was the determination of free cysteine residues, the third step was the analysis of disulfide bond using a high-resolution mass spectrometry, and the final step was the determination of disulfide bonds based on the comprehensive verification. In this study, we performed the characterization of disulfide bonds for the recombinant protein (HRPE1), where 1 and 5 inter- and intra-chain disulfide bonds were identified, respectively.
[References]
  1. Rietsch A, Beckwith J, Annu. Rev. Genet., 32, 163, 1998
  2. Seiwert B, Karst U, Anal. Chem., 79, 7131, 2007
  3. Xu H, Zhang L, Freitas MA, J. Proteome Res., 7, 138, 2008
  4. Yen TY, Yan H, Macher BA, J. Mass Spectrom., 37, 15, 2002
  5. Yen TY, Joshi RK, Yan H, Seto NOL, Palcic MM, Macher BA, J. Mass Spectrom., 35, 990, 2000
  6. John H, Forssmann WG, Rapid Commun Mass Spectrom., 15, 1222, 2001
  7. Cao Y, Zhang W, Yang X, Yang J, Zhi H, Korean Chem. Eng. Res., 52(2), 187, 2014
  8. Zeng R, Xu Q, Shao XX, Wang KY, Xia QC, Rapid Commun. Mass Spectrom., 15, 2213, 2001
  9. Jones MD, Hunt J, Liu JL, Patterson SD, Kohno T, Lu HS, Biochemistry, 36, 14914, 1997
  10. Jones MD, Patterson SD, Lu HS, Anal. Chem., 70, 136, 1998
  11. Debski J, Wyslouch-Cieszynska A, Dadlez M, Grzelak K, Kludkiewicz B, Kolodziejczyk R, Lalik A, Ozyhar A, Kochman M, Arch. Biochem. Biophys., 421, 260, 2004
  12. Tie JK, Mutucumarana VP, Straight DL, Carrick KL, Pope RM, Stafford DW, J. Biol. Chem., 278, 45468, 2003
  13. Rajesh T, Park HY, Song E, Sung C, Park SH, Lee JH, Yoo D, Kim YG, Jeon JM, Kim BG, Yang YH, Korean J. Chem. Eng., 30(2), 417, 2013
  14. Lee IS, Ko KY, Kim IH, Korean Chem. Eng. Res., 53(6), 723, 2015