Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.6, 854-862, 2016
분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구
A Study on Oxygen Evolution Activity of Co3O4 with different morphology prepared by Ultrasonic Spray Pyrolysis for Water Electrolysis
최근 화석연료를 대체할 친환경 신재생에너지에 대한 요구가 증가하면서 수소에너지가 미래 대체에너지원으로서 주목받고 있다. 수소를 생산하는 방법 중 수전해 기술은 에너지효율과 안정성이 뛰어난 장점이 있지만, 산소발생반응시 발생하는 높은 과전압은 여전히 단점으로 지적되고 있다. 본 연구에서는 분무열분해 공정을 통하여 Co 전구체로부터 Co3O4를 제조하였다. 또한, urea, sucrose, citric acid의 유기물첨가제를 사용하여 다양한 입자 크기와 표면형상을 가지는 Co3O4를 제조하였고, 필요에 따라 추가로 열처리를 실시하였다. 합성한 Co3O4의 물리적 특성을 분석하기 위해 X-선 회절 분석(XRD)으로 결정성을 조사하였고, 주사전자현미경(SEM)과 투과전자현미경(TEM)으로 입자형상 및 표면을 분석하였다. 질소 흡·탈착 시험을 통해 촉매의 비표면적 및 기공부피를 측정하였고, 질소도핑을 확인하기 위해 X-선 광전자 분광법(XPS)을 사용하였다. 촉매의 산소발생반응 활성을 알아보기 위해 3전극 셀에서 선형주사전위법(LSV)으로 전기화학적 거동을 분석하였다. 첨가제를 사용하지 않은 Co3O4가 가장 우수한 활성을 보였고, 이는 분무열분해법을 통하여 상대적으로 작은 입자형성과 높은 비표면적의 영향인 것으로 판단된다.
As the demand for a clean energy to replace fossil fuel being depleted increases, hydrogen energy is considered as a promising candidate for future energy source. Water electrolysis which produces hydrogen has high energy efficiency and stability but still has a large overpotential for oxygen evolution reaction (OER). In this study, Co3O4 catalysts with different morphology were prepared by spray pyrolysis from solutions which contain Co precursor and various organic additives (urea, sucrose, and citric acid), followed by post heat treatment. For the catalysts synthesized, Xray diffraction (XRD) measurements were performed to identify their crystal structure. Morphology and surface shape of the catalysts were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Surface area and pore volume were examined by nitrogen adsortpion & desorption tests and X-ray photoelectron spectroscopy (XPS) was conducted to confirm nitrogen doping. Linear sweep voltammetry (LSV) was carried out to investigate OER activity of Co3O4 catalysts. As a result, bare-Co3O4 which has high surface area and small particle size determined by spray pyrolysis showed high activity toward OER.
[References]
  1. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM, Nat. Mater., 6(3), 241, 2007
  2. Jeong JH, Shin EK, Jeong JJ, Na IC, Chu CH, Park KP, Korean Chem. Eng. Res., 52(6), 695, 2014
  3. Yoo SJ, Jeon TY, Sung YE, J. Korean Electrochem. Soc., 12(1), 11, 2009
  4. http://www.h2journal.com/displaynews.
  5. Lee J, Yi Y, Uhm S, J. Korean Ind. Eng. Chem., 19(4), 357, 2008
  6. Park YB, Lim H, Woo HC, Korean Chem. Eng. Res., 54(1), 94, 2016
  7. Shin JS, Cho SJ, Choi SH, Qasim F, Lee HN, Park JH, Lee WJ, Lee ES, Park SJ, Korean Chem. Eng. Res., 52(4), 459, 2014
  8. Kim D, Han GB, Park NK, Lee TJ, Kang M, Korean Chem. Eng. Res., 51(4), 513, 2013
  9. Kim JW, Sim KS, Kim JD, Han SD, Jung KD, J. Korean Hydrogen Energy Society, 12(1), 11, 2001
  10. Yoon DJ, Koh JH, Trans. Korean Hydrogen and New Energy Society, 20(5), 416, 2009
  11. Choi HS, Yim DS, Rhyu CH, Kim JC, Hwang GJ, Trans. Korean Hydrogen and New Energy Society, 23(2), 117, 2012
  12. 이택홍, Journal of Electrical world monthly magazine, 459, 14, 2015
  13. Santos DMF, Sequeira CAC, Figueiredo JL, Quim. Nova, 36(8), 1176, 2013
  14. Chemelewski WD, Lee HC, Lin JF, Bard AJ, Mullins CB, J. Am. Chem. Soc., 136(7), 2843, 2014
  15. Krol RVD, Liang Y, Schoonman J, J. Mater. Chem., 18, 2311, 2008
  16. Artero V, Kerlidou MC, Fontecave M, Angew. Chem.-Int. Edit., 50, 7238, 2011
  17. Seabold JA, Choi KS, Chem. Mater., 23(5), 1105, 2011
  18. Lee YM, Suntivich J, May KJ, Perry EE, Horn YS, J. Phys. Chem. Lett., 3, 399, 2012
  19. Bhosale RR, Kumar A, van den Broeke LJP, Gharbia S, Dardor D, Jilani M, Folady J, Al-Fakih MS, Tarsad MA, Int. J. Hydrog. Energy, 40(4), 1639, 2015
  20. Gokon N, Murayama H, Nagasaki A, Kodama T, Sol. Energy, 83(4), 527, 2009
  21. Lee SH, Yu SH, Lee JE, Jin AH, Lee DJ, Lee NH, Jo HG, Shin KS, Ahn TY, Kim YW, Choe HM, Sung YE, Hyeon TH, Nano Lett., 13(9), 4249, 2013
  22. Zhang JH, Feng JY, Zhu T, Liu ZL, Li QY, Chen SZ, Xu CW, Electrochim. Acta, 196(1), 661, 2016
  23. Xie K, Masa J, Madej E, Yang F, Weide P, Dong W, Muhler M, Schuhmann W, Xia W, ChemCatChem, 7, 3027, 2015
  24. Wang X, Zheng Y, Yuan J, Shen J, Wang AJ, Niu L, Huang S, Electrochim. Acta, 212(10), 890, 2016
  25. Li L, Tian T, Jiang J, Ai L, J. Power Sources, 294(30), 103, 2015
  26. Hou Y, Li J, Wen Z, Cui S, Yuan C, Chen J, Nano Energy, 12, 1, 2015
  27. Chen S, Zhao Y, Sun B, Ao Z, Xie X, Wei Y, Wang G, ACS Appl. Mater. Interfaces, 7, 3306, 2015
  28. Rosen J, Hutchings GS, Jiao F, J. Am. Chem. Soc., 135(11), 4516, 2013
  29. Ryu WH, Yoon TH, Song SH, Jeon SW, Park YJ, Kim ID, Nano Lett., 13(9), 4190, 2013
  30. Solmaz R, Kardas G, Electrochim. Acta, 54(14), 3726, 2009
  31. Chen R, Wang HY, Miao J, Yang H, Liu B, Nano Energy, 11, 333, 2015
  32. Kibria AKMF, Tarafdar SA, Int. J. Hydrog. Energy, 27(9), 879, 2002
  33. Prabu M, Ketpang K, Shanmugam S, Nanoscale, 6, 3173, 2014
  34. Lu X, Zhao C, J. Mater. Chem. A, 1, 12053, 2013
  35. Pan L, Li L, Tian D, Li C, Wang J, JOM, 66(6), 1035, 2014
  36. Liu SY, Li LJ, Patterson NA, Manthiram A, J. Electrochem. Soc., 163(2), A150, 2016
  37. Castro EB, Gervasi CA, Int. J. Hydrog. Energy, 25(12), 1163, 2000
  38. Koza JA, He Z, Miller AS, Switzer JA, Chem. Mater., 24(18), 3567, 2012
  39. Sun C, Rajasekhara S, Chen Y, Goodenough JB, Chem. Commun., 47, 12852, 2011
  40. Bahlawane N, Rivera EF, Kohse-Hoinghaus K, Brechling A, Kleineberg U, Appl. Catal. B: Environ., 53(4), 245, 2004
  41. Blakemore JD, Gray HB, Winkler JR, Muller AM, ACS Catal., 3, 2497, 2013
  42. Buyukyazi M, Hegemann C, Lehnen T, Tyrra W, Mathur S, Inorg. Chem., 53(20), 10928, 2014
  43. Barrera CE, Flores JCM, Gonzalez GF, Lopez MO, Rosas RC, Surf. Sci. J., 5, 9, 2013
  44. Won JM, Kim JH, Choi YJ, Cho JS, Kang YC, Ceram. Int., 42, 5461, 2016
  45. Ko YN, Choi SH, Kang YC, J. European Ceram. Soc., 33(7), 1335, 2013
  46. Ko YN, Kang YC, Ceram. Int., 38, 2071, 2012
  47. Wang JF, Liu W, Chen JX, Wang HL, Liu S, Chen SG, Electrochim. Acta, 188, 210, 2016
  48. Esswein AJ, McMurdo MJ, Ross PN, Bell AT, Tilley TD, J. Phys. Chem. C, 113, 15068, 2009
  49. Shi N, Cheng W, Zhou H, Fan T, Niederberger M, Chem. Commun., 51, 1338, 2015
  50. Yao L, Zhong H, Deng CW, Li XF, Zhang HM, J. Energy Chem., 25, 153, 2016
  51. Park GD, Cho JS, Kang YC, Nano Energy, 17, 17, 2015
  52. Tian GL, Zhao MQ, Yu D, Kong XY, Huang JQ, Zhang Q, Wei F, Small, 10, 2251, 2014
  53. Gao MR, Cao X, Gao Q, Xu YF, Zheng YR, Jiang J, Yu SH, ACS Nano, 8, 3970, 2014
  54. Chen S, Duan JJ, Jaroniec M, Qiao SZ, Adv. Mater., 26(18), 2925, 2014
  55. Gao MR, Xu YF, Jiang J, Zheng YR, Yu SH, J. Am. Chem. Soc., 134(6), 2930, 2012