Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.6, 786-791, 2016
그래핀 볼의 친환경 제조 및 특성 평가
Environment-Friendly Synthesis of Graphene Ball and its Characterization
친환경 환원제인 글루코스를 사용하여 액상 반응으로 그래핀 산화물을 환원시킨 후 에어로졸 분무건조 공정을 통하여 구형의 그래핀 볼(Graphene Ball, GB)을 제조하였다. 제조된 입자는 FE-SEM 분석을 통하여 구형임을 관찰하였고, XRD 분석으로 구형 입자들의 결정형이 그래핀임을 확인하였다. GB의 구형도는 온도, 글루코스의 양, 암모니아수(NH4OH)의 주입에 따라 조절할 수 있었다. 제조된 GB 중, 암모니아수 주입 하에 온도가 높은 조건에서 제조된 GB가 높은 구형도를 보였다. 암모니아수 주입하에 진행된 액상반응에 주입된 글루코스의 양이 증가할수록 구형도가 높은 GB가 생성되었다. 가장 높은 구형도를 가지는 GB의 구형도는 1.1이었다. 상대적으로 높은 구형도를 가지는 GB가 낮은 구형도를 가지는 GB보다 응집성이 감소됨을 확인할 수 있었다. 추가적으로 GB의 전기화학 분석 결과를 통해 GB 가 커패시터의 전극 재료로서의 가능성을 보여주었다.
Spherical graphene balls were fabricated by an aerosol spray drying process after reduced graphene oxide was prepared by the liquid phase reaction using glucose as an environment-friendly reducing agent. Spherical morphology of the as-fabricated particles was observed by FE-SEM analysis. Diffraction patterns of spherical particles were found as graphene by XRD analysis. Sphericity of GB was controlled by the variation of operating temperature, amount of glucose, and addition of NH4OH. Higher sphericity of GB was prepared at higher operating temperature in the presence of NH4OH. As the amount of glucose in the liquid phase reaction increased in the presence of NH4OH, sphericity of GB increased. The highest sphericity of GB was 1.1. GB of higher sphericity showed lower aggregation property than that of lower sphericity. Furthermore, as-prepared GBs were found as a potential electrode material for capacitor.
[References]
  1. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J, Chem. Soc. Rev., 44, 7484, 2015
  2. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183, 2007
  3. Stankovich S, Dikin DA, Dommett GHB, Kohlhass KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS, Nature, 442, 282, 2006
  4. Li ZY, Akhtar MS, Kuk JH, Kong BS, Yang OB, Mater. Lett., 86, 96, 2012
  5. Jang HD, Kim SK, Chang H, Choi JW, Huang J, Mater. Lett., 106, 277, 2013
  6. Huang Y, Liang J, Chen Y, Small, 8, 1805, 2012
  7. Kim KM, Lee YG, Kim SO, Korean Chem. Eng. Res., 48(3), 292, 2010
  8. Choi BG, Huh YS, Hong WH, Korean Chem. Eng. Res., 50(4), 754, 2012
  9. Hummers WS, Offeman RE, J. Am. Soc., 80, 1339, 1958
  10. Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM, Nat. Mater., 10(6), 424, 2011
  11. Si Y, Samulski ET, Nano Lett., 8, 1679, 2008
  12. Park SJ, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS, Nano Lett., 9, 1593, 2009
  13. Kim YK, Kim MH, Min DH, Chem. Commun., 47, 3195, 2011
  14. Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JMD, J. Phys. Chem. C, 114, 6426, 2010
  15. Lei Z, Lu L, Zhao XS, Energy Environ. Sci., 5, 6391, 2012
  16. Zhu C, Guo S, Fang Y, Dong S, ACS Nano, 4, 2429, 2010
  17. Wang W, Guo S, Lee I, Ahmed K, Zhong J, Favors Z, Zaera F, Ozkan, M, Ozkan CS, Scientific Reports, 4, 4452, 2014
  18. Chen CM, Zhang Q, Huang CH, Zhao XC, Zhang BS, Kong QQ, Wang MZ, Yang YG, Cai R, Su DS, Chem. Commun., 48, 7149, 2012
  19. Xu Y, Sheng K, Li C, Shi G, ACS Nano, 4, 4324, 2010
  20. Luo J, Jang HD, Huang J, ACS Nano, 7, 1464, 2013
  21. Kim DJ, Kim KS, Korean Chem. Eng. Res., 45(6), 536, 2007
  22. Jang HD, Kim SK, Chang H, Roh KM, Choi JW, Huang J, Biosensors Bioelectronics, 38, 184, 2012
  23. Luo J, Jang HD, Sun T, Xiao L, He Z, Katsoulidis AP, Kanatzidis MG, Gibbson JM, Huang J, ACS Nano, 5, 8943, 2011
  24. Juansah J, Yulianti W, IOP Conf. Series: Earth Environmental Science, 31, 012039, 2016
  25. Zhao B, Liu P, Jiang Y, Pan DY, Tao HH, Song JS, Fang T, Xu WW, J. Power Sources, 198, 423, 2012