Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.5, 671-677, 2016
알칼리금속과 알칼리 토금속 촉매 담지 대나무 활성탄의 NO 가스 반응 특성
Kinetics of Nitric Oxide Reduction with Alkali Metal and Alkali Earth Metal Impregnated Bamboo Activated Carbon
대나무를 원료로 탄화 및 활성화온도 900 °C에서 대나무 활성탄을 만들고, 이 대나무 활성탄에 알칼리 금속(Na, K)과 알칼리토금속(Ca, Mg)을 담지 시켜 알칼리 담지 대나무활성탄을 제조하였다. 제조된 알칼리 담지 활성탄의 비표면적 및 세공분포 등의 물리적 특성을 분석하였다. 또한 폐 대나무활성탄의 재활용을 위하여 알칼리 담지 대나무활성탄과 NO 기체의 반응 특성 실험을 열중량분석기를 사용하여 비등온반응(반응온도 20~850 °C, NO 농도 0.1 kPa)과 등온반응(반응온도 600, 650, 700, 750, 800, 850 °C, NO 농도 0.1~1.8 kPa) 조건에서 하였다. 실험 결과, 대나무 활성탄특성 분석에서 알칼리 담지 대나무 활성탄에서는 알칼리 담지량이 증가할수록 세공 부피와 표면적이 감소하였다. 비등온과 등온 NO 반응에서는 전체적으로 Ca금속담지 대나무활성탄[BA(Ca)]과 Na금속담지 대나무활성탄[BA(Na)], K금속담지 대나무활성탄[BA(K)], Mg금속담지 대나무활성탄[BA(Mg)]이 대나무활성탄[BA]에 비하여 반응속도가 향상되는 것을 볼 수 있다. BA(Ca)> BA(Na)> BA(K)> BA(Mg)> BA 순으로 촉매 활성이 유효하였다. NO 반응에서의 활성화에너지는 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol[BA(Mg)]로 나타났고, NO 분압에 대한 반응차수는 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30[BA(Mg)]이었다.
The impregnated alkali metal (Na, K), and the alkali earth metal (Ca, Mg) activated carbons were produced from the bamboo activated carbon by soaking method of alkali metals and alkali earth metals solution. The carbonization and activation of raw material was conducted at 900 °C. The specific surface area and the pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of the used activated carbon. Carbon-NO reactions were carried out in the nonisothermal condition (the reaction temperature 20~850 °C, NO 1 kPa) and the isothermal condition (the reaction temperature 600, 650, 700, 750, 800, 850 °C, NO 0.1~1.8 kPa). As results, the specific volume and the surface area of the impregnated alkali bamboo activated carbons were decreased with increasing amounts of the alkali. In the NO reaction, the reaction rate of the impregnated alkali bamboo activated carbons was promoted to compare with that of the bamboo activated carbon [BA] in the order of BA(Ca)> BA(Na)> BA(K)> BA(Mg) > BA. Measured the reaction orders of NO concentration and the activation energy were 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30 [BA(Mg)], and 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol [BA(Mg)], respectively.
[References]
  1. Bak YC, Cho KJ, Choi JH, Korean Chem. Eng. Res., 43(1), 146, 2005
  2. Yaverbaum LH, “Nitrogen Oxides Control and Removal-Recent Developments,” Noyes Data Corporation, N.J., pp. 45-53 (1979).
  3. Sloss LL, “Nitrogen Oxides Control Technology Fact Book,” Noyes Data Corporation, N. J., pp. 38-53(1992).
  4. Feng B, Liu H, Yuan JW, Lin ZJ, Liu DC, Energy Fuels, 10(1), 203, 1996
  5. Burch TE, Tillman FR, Chen W, Lester TW, Conway RB, Sterling AM, Energy Fuels, 5, 231, 1991
  6. Park HM, Park YK, Jeon JK, Korean Chem. Eng. Res., 49(6), 739, 2011
  7. Yoon KS, Ryu SK, Korean J. Chem. Eng., 27(6), 1882, 2010
  8. Furusawa T, Tsunoda M, Tsujimura M, Adschri T, Fuel, 64, 1306, 1985
  9. Chan LK, Sarofim AF, Beer JM, Combust. Flame, 52, 37, 1983
  10. Suzuki T, Kyotani T, Tomita A, Ind. Eng. Chem. Res., 33(11), 2840, 1994
  11. Teng H, Suuberg EM, Calo JM, Energy Fuels, 6, 398, 1992
  12. DeGroot WF, Richards GN, Carbon, 29(2), 179, 1991
  13. Teng HS, Lin HC, Hsieh YS, Ind. Eng. Chem. Res., 36(3), 523, 1997
  14. Park SJ, Kim BJ, Kawasaki J, Korean Chem. Eng. Res., 41(5), 649, 2003
  15. Bak YC, Energy Engg. J, 8(2), 279, 1999
  16. Kim J, Hong I, Ha B, J. Korean Soc. Environ. Eng., 21(3), 595, 1999
  17. Illangomez MJ, Linaressolano A, Radovic LR, Delecea CS, Energy Fuels, 10(1), 158, 1996
  18. Bak YC, Choi JH, Lee GL, Korean Chem. Eng. Res., 52(6), 807, 2014
  19. GarciaGarcia A, IllanGomez M, LinaresSolano A, deLecea CSM, Fuel, 76(6), 499, 1997
  20. Illangomez MJ, Linaressolano A, Radovic LR, Delecea CS, Energy Fuels, 9(1), 112, 1995
  21. Richthofen AV, Wendel E, Neuschutz D, Fresenius J. Anal. Chem., 346, 261, 1993
  22. Guo F, Hecker WC, ACS Div. Fuel Chem. Prepr., 41(1), 179, 1996
  23. Aarna I, Suuberg EM, Fuel, 76(6), 475, 1997