Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.5, 665-670, 2016
Single cell-strain부터 유래된 무세포 효소 시스템을 이용한 톨루엔 및 아세트산 분해
Degradation of Toluene and Acetic Acid Using Cell-Free Enzyme System from Single Cell-Strain
본 연구에서는 톨루엔 분해 균주인 Pseudomonas putida와 아세트산 분해 균주인 Cupriavidus necator에 무세포 효소 시스템(cell-free enzyme system)을 적용하여 톨루엔과 아세트산에 대한 분해 가능성을 확인하는 실험을 수행하였다. P. putida는 톨루엔 존재 하에서만 toluene dioxygenase를 생성하여 톨루엔을 cis-toluene dihydrodiol로 분해하며, C. necator는 acetyl coenzyme A synthetase-1을 생성하여 아세트산을 acetyl CoA로 전환시켜 생존에 필요한 ATP나 생분해성(biodegradable) 고분자인 Polyhydroxyalkanoate (PHA)를 합성한다. P. putida의 톨루엔 분해 효소인 toluene dioxygenase는 유도효소이기 때문에 toluene dioxygenase 생성 전과 후로 나누어 실험을 진행하였다. P. putida의 톨루엔 분해능력 확인을 위한 gas chromatography (GC) 분석 결과, 대조군과 toluene dioxygenase 생성 전인 실험군 1에서는 검출된 톨루엔의 양이 거의 유사하였으나, toluene dioxygenase 생성 후인 실험군 2에서는 검출된 톨루엔의 양이 대조군 및 실험군 1에 비해 감소하였다. 또한 C. necator의 아세트산 분해능력 확인을 위한 gas chromatography-mass spectrometer (GC-MS) 분석 결과, 무세포 효소 시스템을 적용한 실험군에서는 아세트산에 대한 피크가 검출되지 않았다. 따라서 P. putida와 C. necator는 무세포 효소 시스템 적용 후에도 톨루엔 및 아세트산 분해 능력이 유지되었으나, P. putida는 무세포 효소 시스템을 적용하기 전에 유도 효소를 생성하는 과정이 필요하다.
This study deals with the possible degradation of toluene and acetic acid when subjected to cell-free enzyme system from the toluene degrading bacteria Pseudomonas putida and acetic acid degrading bacteria Cupriavidus necator. P. putida produces toluene dioxygenase only under the existence of toluene in culture medium and toluene is degraded to cis-toluene dihydrodiol by this enzyme. C. necator produces acetyl coenzyme A synthetase-1 and converts acetic acid to acetyl CoA in order to synthesize ATP to need for growth or PHA which is biodegradable polymer. In case of toluene degradation, the experiment was conducted before and after production of toluene dioxygenase as this enzyme, produced by P. putida, is an inducible enzyme. Toluene was detected using gas chromatography (GC). Similar amount of toluene was found in control group and before production of toluene dioxygenase (experimental group 1). However, reduction in toluene was detected after the production of toluene dioxygenase (experimental group 2). Acetic acid was detected through application of gas chromatography-mass spectrometer (GC-MS). The results showed the acetic acid peak was not detected in the experimental group to apply cell-free enzyme system. These results show that the cell-free enzyme system obtained from P. putida and C. necator retained the ability to degrade toluene and acetic acid. However, P. putida needs to produce the inducible enzyme before preparation of the cell-free enzyme system.
[References]
  1. Ahn JW, Kim YH, Kim KH, Song HN, Anal. Sci. Technol., 25(2), 91, 2012
  2. Hupert-Kocurek K, Guzik U, Wojcieszynska D, Acta. Biochim. Pol., 59(3), 345, 2012
  3. Fan LH, Zhang ZJ, Yu XY, Xue YX, Wang MM, Tan TW, Process Biochem., 48(3), 430, 2013
  4. Khattak WA, Ullah MW, Ul-Islam M, Khan S, Kim M, Kim Y, Park J, Appl. Microbiol. Biotechnol., 98(23), 9561, 2014
  5. Welch P, Scopes RK, J. Biotechnol., 2(5), 257, 1985
  6. Ullah MW, Khattak WA, Ul-Islam M, Khan S, Park JK, Biotechnol. Bioprocess Eng., 20(3), 561, 2015
  7. Ullah MW, Khattak WA, Ul-Islam M, Khan S, Park JK, Biochem. Eng. J., 91, 110, 2014
  8. Yeh WK, Gibson DT, Liu TN, Biochem. Biophys. Res. Commun., 78(1), 401, 1977
  9. Chakraborty P, Gibbons W, Muthukumarappan K, J. Appl. Microbiol., 106(6), 1996, 2009
  10. Khan S, Ul-Islam M, Khattak WA, Ullah MW, Yu B, Park JK, Korean J. Chem. Eng., 32(4), 694, 2015
  11. Ullah MW, Ul-Islam M, Khan S, Kim Y, Park JK, Carbohydr. Polym., 132, 286, 2015
  12. Khattak WA, Ul-Islam M, Ullah MW, Yu BW, Khan S, Park JK, Process Biochem., 49(3), 357, 2014
  13. Finette BA, Subramanian V, Gibson DT, J. Bacteriol., 160(3), 1003, 1984
  14. Zylstra GJ, McCombie WR, Gibson DT, Finette BA, Appl. Environ. Microbiol., 54(6), 1498, 1988
  15. Subramanian V, Liu TN, Yeh WK, Gibson DT, Biochem. Biophys. Res. Commun., 91(3), 1131, 1979
  16. Lee SY, Biotechnol. Bioeng., 49(1), 1, 1996
  17. Wang J, Yue ZB, Sheng GP, Yu HQ, Biochem. Eng. J., 49(3), 422, 2010
  18. Gibson DT, Koch JR, Kallio RE, Biochemistry, 7(7), 2653, 1968
  19. Rogers JE, Gibson DT, J. Bacteriol., 130(3), 1117, 1977
  20. Ziffer H, Jerina DM, Gibson DT, Kobal VM, J. Am. Chem. Soc., 95(12), 4048, 1973
  21. Lee JS, “Biological Treatment of Wastewater in Automobile Paint Shop,” MS. Thesis, Kyungpook National University, Daegu, Korea (2015).
  22. Kim JY, Yoon SM, Park K, Yoon SK, Kil IS, Park HJ, Rhee YW, Korean Chem. Eng. Res., 48(6), 752, 2010
  23. Kim SS, Park DW, Kim SY, Kim JH, Haam SJ, Kim E, Kim WS, Korean Chem. Eng. Res., 39(3), 340, 2001