Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.5, 648-652, 2016
구아니딘계 초염기 흡수제에 의한 충진탑에서의 이산화탄소 포집 특성
Carbon Dioxide Absorption in a Packed Column Using Guanidine-based Superbase Solution
본 연구에서는 구아니딘계 초염기인 1,1,3,3-테트라메틸 구아니딘(TMG)과 에틸렌 글라이콜로 구성된 비수계 흡수제를 충진탑에 적용하여 이산화탄소 흡수특성을 고찰하였다. 흡수탑은 내경이 1 in이고 높이는 0.6 m이며 탑 내부는 0.16 in × 0.16 in의 규격을 갖는 다공 충진물로 채웠다. 흡수탑에서의 이산화탄소 제거 효율에 대한 흡수제 농도, 조업온도 등의 영향 뿐 아니라 이들이 물질전달 저항에 미치는 영향을 고찰하였다. 이산화탄소에 대한 TMG의 로딩값은 약 α = 1.0 molCO2/molTMG에 달하였으며 이산화탄소가 적게 로딩된 흡수제에서는 총괄 물질전달 계수가 TMG의 농도에 비례하였으나 α = 0.5 이상의 로딩값에서는 총괄 물질전달계수가 오히려 감소하였다. 이는 흡수제의 이산화탄소에 대한 로딩값에 따른 흡수제 점도 증가로 인한 액체상에서의 물질전달 저항 증가로 해석할 수 있다.
The study of CO2 absorption in a packed column by 1,1,3,3-tetramethylguanidine (TMG) dissolved in ethylene glycol is presented. Absorption column of inner diameter 1 in and 0.6 m length was filled with Protruded-packing 0.16 in × 0.16 in. We investigated the effect of operating conditions on overall mass transfer coefficients as well as on CO2 removal efficiency. The loading values reached at about 1.0 molCO2/molTMG. In case of absorbent with lean CO2 loading, the overall mass transfer coefficient was proportional to the concentration of TMG. However, in the range of more than α = 0.5 molCO2/molTMG, the overall mass transfer coefficients decreased with the concentration of TMG. It is due to the increasing of mass transfer resistance in liquid phase as increasing of viscosity at higher loading values.
[References]
  1. O MG, Park SJ, Han KH, Lee JS, Min BM, Korean Chem. Eng. Res., 50(1), 128, 2012
  2. Hasib-ur-Rahman M, Siaj M, Larachi F, Chem. Eng. Process., 49(4), 313, 2010
  3. Zhao B, Sun Y, Yuan Y, Gao J, Wang S, Zhuo Y, Chen C, Energy Proc., 4, 93, 2011
  4. Jessop PG, Heldebrant DJ, Li XW, Eckert CA, Liotta CL, Nature, 436, 1102, 2005
  5. Heldebrant DJ, Jessop PG, Thomas CA, Eckert CA, Liotta CL, J. Org. Chem., 70, 5335, 2005
  6. Wang C, Luo H, Jiang D, Li H, Dai S, Green Chem., 12, 870, 2010
  7. Wang C, Luo H, Luo X, Li H, Dai S, Green Chem., 12, 2019, 2010
  8. Wang C, Luo H, Jiang D, Li H, Dai S, Angew. Chem.-Int. Edit., 49, 5978, 2010
  9. Wang C, Luo X, Luo H, Jiang D, Li H, Dai S, Angew. Chem.-Int. Edit., 50, 4918, 2011
  10. Heldebrant DJ, Koech PK, Ang MCT, Liang C, Rainbolt JE, Yonkera CR, Jessop PG, Green Chem., 12, 713, 2010