Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.5, 630-635, 2016
선박평형수 처리장치의 Scale-up을 위한 조건 최적화 연구
A Study on the Optimization of Ballast Water Treatment System for Scale-up
선행연구에서는 2차오염이 없는 물리적 처리방법인 전단응력을 이용한 선박평형수 처리장치에 대하여 연구하였다. 정지상태의 외부 실린더와 회전하는 내부 실린더 사이에 발생하는 전단응력을 이용하여 다양한 미생물을 파쇄 처리하는 원리이며, 전단응력은 실린더 표면의 형태나 회전속도에 따라 크기가 달라진다. 전단응력의 크기와 전단응력을 받는 시간에 따라 멸균정도가 차이를 보이기 때문에, 다양한 조건에 따른 멸균효율을 밝히는 실험이 필요하며 이를 통해 상업용 장치의 제작을 위한 기초 자료를 마련하고자 하였다. 선행연구에서는 disk type과 cylinder type의 비교를 통하여 cylinder type이 우수함을 밝혔다. 본 연구에서는 선행연구를 통하여 얻은 결과를 바탕으로 cylinder type, groove type, knurling type의 표면 조건을 변화시켜 가장 우수한 조합을 밝혀냄과 동시에 실린더 사이의 간격에 따른 회전속도 및 유속 조건을 최적화 하고자하였다. 그 결과 groove type에서 250 mL/min의 유량조건에서는 8000 rpm 이상, 혹은 500mL/min의 유량조건에서는 10000 rpm 이상에서 100% 살균 처리되는 결과를 얻었다.
In the prior work, we studied a ballast water treatment apparatus, which is secondary pollution free by using physical treatment of shear stress. The principle of this apparatus is smashing various microorganisms by shear stress generated between stationary outer cylinder and revolving inner cylinder. Because of various magnitude of shear stress according to the inner cylinder surface type and revolution speed, an appropriate surface type and optimum revolution speed should be studied by consecutive experiment to determine the reference data for commercial apparatus. Through a comparative study of disk type and cylinder type of ballast water treatment apparatus, cylinder type is turned out to be superb to disk type. In this study, we studied to determine the superior collaboration of cylinder type, groove type and knurling type of inner cylinder to non patterned outer cylinder, and to optimize the revolution speed and flow rate according to the gap between inner cylinder and outer cylinder. As a result, we could get perfect sterilization effect at groove type under the conditions of 250 mL/min of flow rate at 8,000 rpm and 500 mL/min of flow rate at 10,000 rpm respectively.
[References]
  1. Rivas-Hermann R, Kohler J, Scheepens AE, J. Clean Prod., 106, 443, 2015
  2. Jung Y, Yoon Y, Hong E, Kwon M, Kang J, Marine Pollution Bulletin, 72(1), 71, 2013
  3. Seiden JM, Rivkin RB, Marine Pollution Bulletin, 78, 7, 2014
  4. Wright DA, Gensemer RW, Mitchelomore CL, Stubblefield WA, Genderen EV, Dawson R, Dawson CEO, Bearr JS, Mueller RA, Cooper WJ, Marine Pollution Bulletin, 60(9), 1571, 2010
  5. Zhang NH, Hu KF, Shan BH, Chem. Eng. J., 243, 7, 2014
  6. Maranda L, Cox AM, Campbell RG, Smith DC, Marine Pollution Bulletin, 75(1-2), 76, 2013
  7. International Maritime Organization (IMO), International covention for the control and management of ship’s. ballast Water and Sediments, 25/09/06, accessed from website(2004).
  8. International Maritime Organization (IMO), Global ballast water management programme, 15/01/08, accessed from http://globallast.imo.org(2008).
  9. David M, Gollasch S, Leppakoski E, Marine Pollution Bulletin, 75(1-2), 205, 2013
  10. Delacroix S, Vogelsang C, Tobiesen A, Liltved H, Marine Pollution Bulletin, 73(1), 24, 2013
  11. Zhang NH, Ma B, Li JX, Zhang ZT, Chem. Eng. J., 231, 427, 2013
  12. Tang Z, Butkus MA, Xie YF, Chemosphere, 74(10), 1396, 2009
  13. Zhang N, Zhang Y, Bai M, Zhang Z, Chen C, J. Environ. Manage., 145, 122, 2014
  14. Lafontaine YD, Despatie SP, Sci. Total Environ., 472, 1036, 2014
  15. Feng D, Shi J, Sun D, Marine Pollution Bulletin, 90(1-2), 299, 2015
  16. Akram AC, Noman S, Javid RM, Gizicki JP, Reed EA, Singh SB, Basu AS, Banno F, Fujimoto M, Ram JL, Water Res., 70, 404, 2015
  17. Kang A, Kim S, Song J, J. Korean Oil Chemists’ Soc., 32(3), 412, 2015
  18. Kang A, Kim S, Kim Y, Song J, J. Korean Oil Chemists’ Soc., 32(4), 363, 2015