Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.5, 593-597, 2016
고분자전해질 연료전지에서 고분자 막의 이온 전도도
Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell
고분자전해질 연료전지에서 전해질막의 이온전도도에 미치는 상대습도, 전류밀도, 온도의 영향에 대해 연구하였다. 전해질막의 물의 함량과 물의 이동은 이온전도도에 많은 영향을 미친다. 전기삼투와 역확산만으로 물 이동을 모사하고 해석하였다. 이온전도도는 셀 밖에서 측정 장비로 막 상태에서 그리고 막전극합체로 구동상에서 측정되었다. 상대습도 증가에 따라 막 내 물 함량이 증가하였고 물 함량 증가에 따라 이온전도도도 상승하였다. 전류밀도 증가에 따라 전기삼투와 역확산에 의한 물의 양이 증가해 물 함량이 선형적으로 증가하였고 그 결과 전류밀도 증가에 따라 이온전도도가 선형적으로 상승하였다. 온도가 50 oC에서 80 oC로 증가함에 따라 이온전도도는 약 40% 증가하였다.
The effects of relative humidity, current density and temperature on the ionic conductivity were studied in PEMFC (Proton Exchange Membrane Fuel Cell). Water contents and water flux in the electrolyte membrane largely affected ion conductivity. The water flux was modelled and simulated by only electro-osmotic drag and back-diffusion of water. Ion conductivities were measured at membrane state out of cell and measured at MEA (Membrane and Electrode Assembly) state in condition of operation. The water contents in membrane increase as relative humidity increased in PEMFC, as a results of which ion conductivity increased. Current enhanced electro-osmotic drag and back diffusion and then water contents linearly increased. Enhancement of current density results in ion conductivity. Ion conductivity of about 40% increased as the temperature increased from 50 ℃ to 80 ℃.
[References]
  1. Wilkinson DP, St-Pierre J, in: Vielstich W, Gasteiger HA. Lamm A (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England (2003).
  2. Karpenko-Jereb L, Innerwinkler P, Kelterer AM, Sternig C, Fink C, Prenninger P, Tatschl R, Int. J. Hydrog. Energy, 39(13), 7077, 2014
  3. Hsu WY, Gierke TD, J. Membr. Sci., 13, 307, 1983
  4. Fimrite J, Struchtrup H, Djilali N, J. Electrochem. Soc., 152(9), A1804, 2005
  5. Cwirko EH, Carbonell RG, J. Membr. Sci., 48, 155, 1990
  6. Zabolotsky VI, Nikonenko VV, J. Membr. Sci., 79, 181, 1993
  7. Berezina NP, Karpenko LV, Colloid J., 62, 676, 2000
  8. Carnes B, Djilali N, Electrochim. Acta, 52(3), 1038, 2006
  9. Berg P, Promislow K, St Pierre J, Stumper J, Wetton B, J. Electrochem. Soc., 151(3), A341, 2004
  10. Kulikovsky AA, Electrochim. Acta, 49(28), 5187, 2004
  11. Kshitsh, Patankar A, David, Dillard A, Scott, Case W, Michael, Ellis W, Yeh-Hung, Lai, Budinski MK, Gittleman GS, Mech Time-Depend Mater, 12, 211, 2008
  12. Ye XH, Wang CY, J. Electrochem. Soc., 154(7), B676, 2007
  13. Ju HC, Wang CY, Cleghorn S, Beuscher U, J. Electrochem. Soc., 152(8), A1645, 2005
  14. Springer TE, Zawodzinski TA, Gattesfeld S, J. Electrochem. Soc., 138(8), 2334, 1991
  15. Zawodzinski TA, Springer TE, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S, J. Electrochem. Soc., 140, 1981, 1993
  16. Cooper KR, J. Electrochem. Soc., 157(11), B1731, 2010
  17. Jeong JJ, Shin YC, Lee MS, Lee DH, Na IC, Lee H, Park KP, Korean Chem. Eng. Res., 51(5), 556, 2013
  18. Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487, 2011