Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.4, 555-559, 2016
비피리미딘계 배위자를 골격으로 하는 Pt(II)착체의 합성 및 특성
A Synthesis and Characterization of Pt(II) Complexes with Bipyrimidin-based Back-bone System
본 연구에서는 2,2'-bispyrimidine (bpim), 2,2'-bipyridine (bpy), 5,5'-dimethyl-2,2'-bipyridine (5,5-mebpy), 5'-bromo-2,2'-bipyridine (5-brbpy), 5,5'-dibromo-2,2'-bipyridine (5,5-brbpy), 4,4'-dimethyl-2,2'-bipyridine (4,4-mebpy), 4, 4'- dihexyl-2, 2'- Bipyridine (4,4-hebpy), 1, 10'- Phenanthroline (phen), 3,4,7,8'- tetramethyl-1, 10'- Phenanthroline (3,4,7,8-phen)을 사용하여 단핵 Platinum착체를 합성하였다. 합성되어진 Platinum착체의 화학적 구조를 결정하기 위해서 1H(13C)-NMR, FT-IR을 사용하였으며, 광 물리학적 특성에 대한 측정은 UV-vis, PL을 통하여 측정하였다. 합성한 Platinum착체는 356 nm~421 nm영역에서 발광파장이 확인되었으며, DMSO용액에서 내부양자효율이 0.05~0.46으로 나타났다.
In this study, new platinum complexes were synthesized utilizing the ligand of a 2,2'-bispyrimidine (bpim), 2,2'-bipyridine (bpy), 5,5'-dimethyl-2,2'-bipyridine (5,5-mebpy), 5'-bromo-2,2'-bipyridine (5-brbpy), 5,5'-dibromo-2,2'-bipyridine (5,5-brbpy), 4,4'-dimethyl-2,2'-bipyridine (4,4-mebpy), 4,4'- dihexyl-2, 2'- Bipyridine (4,4-hebpy), 1,10'- Phenanthroline (phen), 3, 4, 7, 8'-tetramethyl-1, 10'- Phenanthroline (3,4,7,8-phen). In order to determine chemical structure of Synthesized platinum complexes, 1H(13C)-NMR, UV-vis and FT-IR were used and optical physics and chemical properties were measured PL. In the case of platinum complexes, wavelength has been identified 356~421 nm. Quantum efficiency in DMSO solution was appeared 0.05~0.46.
[References]
  1. Harima Y, Okazaki H, Kunugi Y, Yamashita K, Ishii H, Seki K, Appl. Phys. Lett., 69, 1059, 1996
  2. Reimers JR, Lu TX, Crossley MJ, Hush NS, Nanotechnology, 7, 424, 1996
  3. Maree CHM, Roosendaal SJ, Savenije TJ, Schropp REI, Schaafsma TJ, Habraken FHPM, J. Appl. Phys., 80, 3381, 1996
  4. Kido J, Kimura M, Nagai K, Science, 267(5202), 1332, 1995
  5. Helfich W, Schneider WG, Phys. Rev. Lett., 14, 229, 1965
  6. Helfich W, Schneider WG, J. Chem. Phys., 44, 2902, 1966
  7. Tang CW, VanSlyke SA, Chen CH, J. Appl. Phys., 65, 3610, 1989
  8. Burroughes JH, Bradly DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB, Nature, 347, 539, 1990
  9. Yu HJ, Chung W, Chun B, Kim SH, Korean Chem. Eng. Res., 49(3), 325, 2011
  10. Sauvageot E, Marion R, Sguerrac F, Grimault A, Daniellou R, Hamel M, Gaillard S, Renaud JL, Org. Chem. Front., 1, 639, 2014
  11. Pal AK, Ducharme PD, Hanan GS, Chem. Commun., 50, 3303, 2014
  12. Nisic F, Colombo A, Dragonetti C, Roberto D, Valore A, Malicka JM, Cocchi M, Freemane GR, Williams JAG, J. Mater. Chem. C, 2, 1791, 2014
  13. Unger Y, Meyer D, Molt O, Schildknecht C, Munster I, Wagenblast G, Strassner T, Angew. Chem.-Int. Edit., 49, 10214, 2010
  14. Yang XH, Wang ZX, Madakuni S, Li J, Jabbour GE, Adv. Mater., 20(12), 2405, 2008
  15. Brooks J, Babayan Y, Lamansky S, Djurovich PI, Tsyba I, Bau R, Thompson ME, Inorg. Chem., 41(12), 3055, 2002
  16. Cocchi M, Kalinowski J, Fattori V, Williams JAG, Murphy L, Appl. Phys. Lett., 94, 073309, 2009
  17. Schwab PFH, Fleischer F, Mich J, J. Org. Chem., 67, 443, 2002
  18. Brotschi C, Mathis G, Leumann CJ, Chem.-Eur. J., 11, 1911, 2005
  19. Armarego WLF, Perrin DD, “Purification of Laboratory Chemicals,” Butterworth-Heinemann. (1995).
  20. Chung MC, Jo WK, Son SH, Kwak CH, Lee JH, Ahn HG, Adv. Mater. Res., 811, 554, 2012
  21. Jo WK, Kwak CH, Lee JH, Jung SC, Ahn HG, Chung MC, J. Nanosci. Nanotechnol., 13(6), 4350, 2013
  22. Zhou M, Robertson GP, Roovers J, Inorg. Chem., 44(23), 8317, 2005
  23. Lowry MS, Hudson WR, Pascal RA, Bernhard S, J. Am. Chem. Soc., 126(43), 14129, 2004