Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.4, 527-532, 2016
감압 순환유동층 플라즈마 반응기의 축방향 고체체류량
Axial Solid Holdup in a Circulating Fluidized Bed Plasma Reactor under Reduced Pressure
감압상태(1torr)의 순환유동층 플라즈마 반응기(내경 10 mm, 높이 800 mm)에서 기상 유속과 고체순환속도가 축방향 고체체류량 분포에 미치는 영향을 연구하였다. 폴리스타이렌 고분자 입자와 질소가스를 고체 및 기상 물질로 각각 사용하였다. 감압상태 순환유동층의 고체 순환량 변화는 상승관의 많은 기체 유량(40~80 sccm)에 의한 변화만큼 고체재순환부의 작은 유량 변화(6.6~9.9 sccm)에 의해서도 가능하였다. 감압상태 순환유동층의 고체 순환속도는 재순환부기체 유속에 따라 증가하였다. 상승관내의 축방향 고체 체류량 분포는 하부의 농후상 영역에서 상부의 희박상 영역까지 높이에 따라 감소하는 형태를 나타내었다. 상승관 내 각 높이에서 고체순환속도의 증가에 따라 직선적으로 고체 체류량이 증가하였다. 이로써 플라즈마 형성과 유지 그리고 플라즈마 반응을 위해 적절한 플라즈마 로드 위치를 결정할 수 있다.
The effects of gas velocity and solid circulation rate on the axial solid holdup distribution have been determined in a 10 mm-I.D. × 800 mm-high circulating fluidized bed plasma reactor under reduced pressure (1torr). Polystyrene polymer powder and nitrogen gas are used as solid and gas materials respectively. The change of solid circulation rate by a large gas flow rate of the riser (40~80 sccm) is also possible by a relatively small gas flow rate of the solid recirculation part (6.6~9.9 sccm). The solid circulation rate in the reactor under reduced pressure increases with increasing aeration velocity in the solid recirculation part. The axial solid holdup in the riser decreases from the dense at the bottom to the dilute phase at the top section of the riser. Solid holdups at the axial positions in the riser increase linearly with increasing solid circulating velocity. From these results, we could determine the position of plasma load for good plasma ignition, maintain and plasma reaction.
[References]
  1. Jung SH, Park SH, Kim SD, J. Chem. Eng. Jpn., 37(2), 166, 2004
  2. Jung SH, Park SH, Lee DH, Kim SD, Polym. Bull., 47(2), 199, 2001
  3. Park S, Korean Chem. Eng. Res., 53(5), 614, 2015
  4. Park SH, Kim SD, Polym. Bull., 33(2), 249, 1994
  5. Park SH, Kim SD, Polym. Bull., 41(4), 479, 1998
  6. Park SH, Kim SD, Colloids Surf. A: Physicochem. Eng. Asp., 133, 33, 1998
  7. Basu P, Fraser SA, “Circulating Fluidized Bed Boiler: Design and Operation,” Butterworth-Heinemann, Boston(1991).
  8. Yerushalmi J: in “Circulating Fludized Bed Technol,” eds. by Basu, Pergamon Press, New York, 97(1986).
  9. Bell AT, “Fundamentals of Plasma Chemistry,” in Techniques and Applications of Plasma Chemistry, Hollahan JR, Bell AT, eds., Wiely, New York(1974).
  10. Kobro H, Brereton C: in “Circulating Fludized Bed Technol,” eds. by Basu P, Pergamon Press, New York, 263(1986).
  11. Kusakabe K, Kuriyama T, Morooka S, Powder Technol., 68, 125, 1989
  12. Li Y, Kwauk M: in “Fluidization,” eds. by Grace JR, Masten JM, Plenum Press, New York, 537(1980).
  13. Rhodes MJ, Laussman P, Can. J. Chem. Eng., 70, 625, 1992
  14. Namkung W, Cho YJ, Kim SD, HWAHAK KONGHAK, 32(2), 241, 1994
  15. Kim SW, Namkung W, Kim SD, Korean J. Chem. Eng., 16(1), 82, 1999