Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.4, 494-500, 2016
에탄올 향상을 위한 탈아세틸화 백합나무 당화액의 발효저해물질 제거와 semi-동시당화발효
Improved Ethanol Production from Deacetylated Yellow Poplar (Liriodendron tulipifera) by Detoxification of Hydrolysate and Semi-SSF
본 연구에서는 백합나무의 아세틸기 제거를 위해 전처리 전에 수산화나트륨을 이용하여 탈아세틸화를 수행하였다. 0.8%의 수산화나트륨을 첨가하여 60 ℃에서 80분 동안 반응시켜 헤미셀룰로오스로부터 대부분의 아세틸기를 제거하였다. 탈아세틸화 처리된 바이오매스를 옥살산 전처리에 이용하였으며, 전처리된 바이오매스 투입량(10, 12.5, 15%) 및 효모 투입시간(0, 6, 12, 24시간)에 따라 동시당화발효 및 semi-동시당화발효를 수행하였다. 최대 에탄올 수율은 바이오매스 투입량 10%에서 효모를 당화시작과 동시에 첨가했을 때 120시간 후 26.73 g/L의 에탄올을 생산하였으며 이것은 88.14%의 에탄올 수율에 해당하였다. 바이오매스 투입량 12.5%와 15% 조건에서는 효모 투입시간 6시간 조건에서 각각 32.34 g/L, 27.15 g/L의 에탄올을 생산하였고, 이는 각각 85.58%와 59.87%의 에탄올 수율에 해당하였다. 옥살산 전처리 후 얻어진 액상 가수분해산물로부터 발효저해물질의 제거를 위해 수산화칼슘을 처리하였으며 발효 72시간 후 5.28 g/L의 최대 에탄올을 얻었다.
In order to remove acetyl group from yellow poplar, deacetylation was performed using sodium hydroxide (NaOH) prior to oxalic acid pretreatment. During the deacetylation (60 ℃ for 80 min, 0.8% NaOH), most of the acetyl group were removed from hemicellulose. Simultaneous saccharification and fermentation (SSF) and semi-SSF were carried out based on solid loading (10, 12.5, 15%) of deacetylated biomass and pre-hydrolysis with enzymes (0, 6, 12, 24 h). The highest ethanol was obtained as 26.73 g/L after 120 h when 10% of biomass was used for SSF. It is corresponding to 88.41% of theoretical ethanol yield. At the 12.5% and 15% of biomass loading, the highest ethanol was obtained from 6 h pre-hydrolysis. It was 32.34 g/L and 27.15 g/L, respectively, and corresponding to ethanol yield of 85.58 and 59.87%. In order to remove fermentation inhibitors from hydrolysates, overliming was performed using calcium hydroxide (Ca(OH)2). The highest ethanol was 5.28 g/L after 72 h of fermentation.
[References]
  1. Kim HY, Lee JW, Jeffries TW, Choi IG, J. Korean Wood Sci. Tech., 39(1), 75, 2011
  2. Lim WS, Lee JW, J. Korean Wood Sci. Tech., 40(4), 294, 2012
  3. Sun Y, Cheng JY, Bioresour. Technol., 83(1), 1, 2002
  4. Allen SG, Schulman D, Lichwa J, Antal MJ, Jennings E, Elander R, Ind. Eng. Chem. Res., 40(10), 2352, 2001
  5. Gupta R, Sharma KK, Kuhad RC, Bioresour. Technol., 100(3), 1214, 2009
  6. Kundu C, Lee HJ, Lee JW, Bioresour. Technol., 178, 28, 2014
  7. Jeong SY, Trinh LTP, Lee HJ, Lee JW, Bioresour. Technol., 152, 444, 2014
  8. Pandey A, “Pretreatment of Biomass,” Elsevier, Netherlands, 27-60(2014).
  9. Kim N, Kim JS, Theor. Appl. Chem. Eng., 10(2), 1546, 2004
  10. Aggarwal NK, Nigam P, Singh D, Yadav BS, J. Microbiol. Biotechnol., 17, 738, 2001
  11. Mukerjea R, Slocum G, Robyt JF, Carbohydr. Res., 341, 2049, 2006
  12. Kim S, Dale BE, Biomass Bioenerg., 26(4), 361, 2004
  13. Shen JC, Agblevor FA, Biomass Bioenerg., 34(8), 1098, 2010
  14. Lee JW, Jeffries TW, Bioresour. Technol., 105, 5884, 2011
  15. Kim JS, Korean Chem. Eng. Res., 51(3), 303, 2013
  16. Tian S, Luo XL, Yang XS, Zhu JY, Bioresour. Technol., 101(22), 8678, 2010
  17. Selig M, Weiss N, Ji Y, “Enzymatic Saccharification of Lignocellulosic Biomass, NREL/TP-510-42629,” National Renewable Energy Laboratory(2008).
  18. Lee JW, Rodrigues RCLB, Jeffries TW, Bioresour. Technol., 100(24), 6307, 2009
  19. Ji Z, Zhang X, Ling Z, Zhou X, Ramaswamy S, Xu F, Biotechnol. Biofuels, 8, 103, 2015
  20. Seo YJ, Lim WS, Lee JW, J. Korean Wood Sci. Tech., 39(6), 490, 2011
  21. Kim SB, Lee JH, Yang X, Lee J, Kim SW, Korean J. Chem. Eng., 32(11), 2280, 2015
  22. Kim HY, Lee JW, Jeffries TW, Gwak KS, J. Korean Wood Sci. Tech., 37(4), 397, 2009
  23. Millati R, Niklasson C, Taherzadeh JM, Bioresour. Technol., 38(4), 515, 2002
  24. Palmqvist E, Grage H, Meinander NQ, Hahn-Hagerdal B, Biotechnol. Bioeng., 63(1), 46, 1999
  25. Lu J, Li XZ, Yang RF, Yang L, Zhao J, Liu YJ, Qu YB, Bioresour. Technol., 144, 539, 2013