Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.4, 470-478, 2016
신재생에너지 기반 독립 에너지공급 시스템 최적 설계 및 에너지수요 부문별 경제성 평가
The Optimal Design and Economic Evaluation of a Stand-Alone RES Energy System for Residential, Agricultural and Commercial Sectors
화석연료 사용으로 인한 환경오염과 기후변화는 전 지구적인 환경 문제로 대두되고 있다. 또한 화석연료 고갈 및 경제적 취약성을 극복하기 위하여 태양광, 풍력 등 신재생에너지 자원 기반 에너지공급 시스템 구축이 많은 관심을 받고 있다. 이러한 신재생에너지 시스템은 자원의 낮은 공급안정성을 극복하기 위하여 다양한 자원을 이용한 독립 통합 에너지공급 시스템 설계 및 운전 전략이 필요하다. 따라서 본 연구에서는 PV, Wind turbine, 화석연료 기반 발전 및 저장장치 등으로 구성된 독립 에너지공급 시스템을 설계하였다. 또한 최적화 모델을 이용하여 각 지역별 최적 전력생산시스템의 구성요소를 규명하고 소요비용을 분석하였다. 제시된 모델 검증을 위하여 한국의 주거, 농업, 상업부문 등 주요에너지수요 만족을 위한 설계문제를 해결하였다. 그 결과 주거부문의 경우 $0.37~$0.44/kWh, 농업부문의 경우 $0.15~$0.61/kWh, 상업부문의 경우 $0.12~$0.28/kWh의 단위전력 비용을 보였다.
Greenhouse gas (GHG) emissions caused by fossil fuels consumption is one of the challenging issues worldwide. Renewable energy source (RES)-based energy supply system can be a promising alternative to the current fossil fuel-based system. In this study, we propose an optimization approach for designing a stand-alone hybrid energy supply system using RES and evaluating economic performances of the energy systems. The suggested approach is used to answer the questions; i) what technology is suitable to various demand sectors in different regions, and ii) how does it cost to meet the demand in term of the levelized costs of energy (LCOE). We illustrate the applicability of the proposed approach by applying to the design problem of energy supply systems for residential, agricultural and commercial sectors of Korea. As the results of LCOE analysis, for the residential sector has the LCOE ranging of $0.37~$0.44/kWh, the agricultural sector of $0.15~$0.61/kWh and the commercial sector of $0.12~$0.28/kWh.
[References]
  1. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Meyer LA, (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
  2. Nakata T, Kubo K, Lamont A, Energy Policy, 33(2), 209, 2005
  3. Kim H, Baek S, Park E, Chang HJ, Renew. Energy, 69, 123, 2014
  4. Korea Energy Economics Institute, “Monthly Energy Trends,” Energy Economic Indicator Analysis Report: No. 40(2015).
  5. Yoon JH, Sim KH, Energy Policy, 86, 369, 2015
  6. Moriarty P, Honnery D, Renew. Sust. Energ. Rev., 16, 244, 2012
  7. Yoo K, Park E, Kim H, Ohm JY, Yang T, Kim KJ, Chang HJ, del Pobil AP, Sustainability, 6, 7883, 2014
  8. Ku S, Yoo S, Renew. Sust. Energ. Rev., 14, 2196, 2010
  9. Kim M, Kim J, Korean Chem. Eng. Res., 53(2), 156, 2015
  10. Lim JH, Int. J. Future Generation Communication and networking, 5(2), 43, 2012
  11. Ni M, Leung MKH, Sumathy K, Leung DYC, Int. J. Hydrog. Energy, 31(10), 1401, 2006
  12. Rehman S, Alam MM, Meyer JP, Al-Hadhrami LM, Renew. Energy, 38(1), 258, 2012
  13. Fadaeenejad M, Radzi MAM, AbKadir MZA, Hizam H, Renew. Sust. Energ. Rev., 30, 299, 2014
  14. Dufo-Lopez R, Bernal-Agustin JL, Yusta-Loyo JM, Dominguez-Navarro JA, Ramirez-Rosado IJ, Lujano J, Aso I, Appl. Energy, 88(11), 4033, 2011
  15. Dufo-Lopez R, Bernal-Agustin JL, HOGA (Hybrid Optimization by Genetic Algorithms) software.
  16. Korea Electric Power Corporation.
  17. Korean Statistical Information Service.
  18. NASA Atmospheric Science Data Center
  19. Korea Electric Power Corporation, “Statistics of Electric Power in Korea,” KEPCO Report: No. 84(2014).