Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.3, 425-430, 2016
Copper 촉매를 이용한 p-phenylenediamine (PPD) 합성에 관한 연구
A Study on the Synthesis of p-phenylenediamine (PPD) Using Copper Catalyst
액체 암모니아와 p-diiodobenzene (PDIB)을 반응물로, Cu계 화합물을 촉매로 사용하는Aromatic amination을 이용하여 p-phenylenediamine (PPD)을 합성하였다. 촉매의 종류와 양, 환원제의 종류, 암모니아의 양, 반응 온도가 생성물의 분포에 미치는 영향을 조사하였다. Cu(I) 화합물과 Cu 분말은 촉매로서 작용한 반면 Cu(II) 화합물은 촉매로서 작용하지 않았다. 촉매의 양이 증가할수록 반응속도는 빨라지지만 부반응물인 aniline의 생성량도 증가하였다. Aniline 생성량은 또한 사용한 암모니아의 양이 증가할수록 감소하였다. 촉매 사용량을 줄이기 위해 환원제인 ascorbic acid, hydrazine, dihydroxyfumaric acid를 조촉매로 사용하면 반응속도가 크게 향상되었으나 부반응물인 aniline의 생성량 또한 증가하였다. 사용한 조촉매 중에서는 ascorbic acid와 dihydroxyfumaric acid를 사용하였을 경우가 hydrazine을 사용하였을 경우보다 반응속도가 빨랐고, dihydroxyfumaric acid를 사용하였을 경우 가장 적은 양의 aniline이 생성되었다.
p-Phenylenediamine (PPD) was synthesized by aromatic amination of p-diiodobenzene (PDIB) using liquid ammonia and Cu-catalysts. The effects of the catalyst, reductant, ammonia quantity and reaction temperature on PPD production were investigated. Cu(I) compounds and Cu powder were selected as catalyst due to a higher selectivity than Cu(II) compounds. As the catalyst quantity increased, rate of PPD production as well as side reaction of aniline decreased with increasing the quantity of ammonia. Reductants such as ascorbic acid, hydrazine and dihydroxyfumaric acid were tested to lower the catalyst loading. The use of reductants resulted in increasing the reaction rate but also increased the amount of aniline The rate of reaction using ascorbic acid or dihydroxyfumaric acid was faster than that using hydrazine. The lowest side reaction of aniline was found in dihydroxyfumaric acid of reductants investigated.
[References]
  1. Stojanovic DB, Zrilic M, Jancic-Heinemann R, Zivkovic L, Kojovic A, Uskokovic PS, Aleksic R, Polym. Adv. Technol., 24, 772, 2013
  2. Lee HJ, “Method for the Preparation of p-Phenelynediamine,” Korea Patent No. 2014032191(2014).
  3. Smiley RA, Phenylene- and Toluenediamines in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim (2002).
  4. Beletskaya IP, Chepracov AV, Organometallics, 31, 7753, 2012
  5. Seo HM, Park YK, Song BS, Noh HD, “Method for Manufacturing Phenylenediamine Containing Recovery Process of Iodine,” Korea Patent No. 10-1482664(2015).
  6. Shimizu A, Yamataka K, “Method for Producing Iodine or Iodine Derivatives,” U.S. Patent No. 4487752(1984).
  7. Herkelmann R, Rudolph W, Seffer D, “Method of Recovering Iodine,” U.S. Patent No. 5356611(1994).
  8. Rule M, Lane DW, Larkins TH, Tustin GC, “Process for Preparing Iodinated Aromatic Compounds”, U.S. Patent No. 4746758(1988).
  9. Kim HS, Cha IH, Lim JB, “Method of Preparing Iodinated Aromatic Compounds with High Yield,” Korea Patent No. 10-1123148(2012).
  10. Aubin Y, Fischmeister C, Thomas CM, Renaud JL, Chem. Soc. Rev., 39, 4130, 2010
  11. Xu H, Wolf C, Chem. Commun., 3035, 2009
  12. Wang D, Qian AB, Cai A, Ding K, Adv. Synth. Catal., 351, 1722, 2009
  13. Xu HJ, Liang YF, Cai ZY, Qi HX, Yang CY, Feng YS, J. Org. Chem., 76, 2296, 2011
  14. Ji P, John HA, Michael IP, J. Org. Chem., 77, 7471, 2012
  15. Mansour M, Giacovazzi R, Ouali A, Taillefer M, Jutand A, Chem. Commun., 6051, 2008
  16. Cho HK, Lim JS, Korean Chem. Eng. Res., 53(1), 53, 2015
  17. Tye JW, Weng Z, Giri R, Hartwig JF, Angew. Chem.-Int. Edit., 49, 2185, 2010
  18. Fier PS, Luo JW, Hartwig JF, J. Am. Chem. Soc., 135(7), 2552, 2013