Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.3, 419-424, 2016
황이 포함된 중형기공성 탄소에 화학적으로 고정화된 H5PMo10V2O40 촉매 상에서 Benzyl Alcohol 산화반응
Benzyl Alcohol Oxidation over H5PMo10V2O40 Catalyst Chemically Immobilized on Sulfur-containing Mesoporous Carbon
황이 포함된 중형기공성 탄소 담체(S-MC)에 화학적으로 고정화된 H5PMo10V2O40 (PMo10V2) 촉매를 제조하고, 이를 Benzyl alcohol 산화반응에 적용해보았다. 먼저 주형물질로 SBA-15, 탄소 전구체로 p-Toluenesulfonic acid를 이용하여 S-MC 지지체를 제조하였다. 이후, PMo10V2 촉매가 화학적으로 고정화될 수 있는 위치를 제공하기 위해 S-MC 지지체의 표면이 양전하를 띠도록 개질시켰다. 전체적으로 음전하를 띠는 [PMo10V2O40]5.를 이용함으로써 PMo10V2를 양이온을 띠는 S-MC 표면에 화학적으로 고정화하였다. 화학적 고정화를 통해 PMo10V2가 분자수준으로 균일하게 분산되었음을 확인하였다. Benzyl alcohol의 기상 산화반응에서 PMo10V2/S-MC 촉매는 무담지 상태의 PMo10V2보다 높은 전화율 및 수율을 나타냈다. PMo10V2/S-MC 촉매의 반응 활성이 향상된 이유는 화학적 고정화를 통해 PMo10V2이 S-MC 지지체에 고르게 분산되었기 때문이다.
H5PMo10V2O40 (PMo10V2) catalyst chemically immobilized on sulfur-containing mesoporous carbon (SMC) was prepared, and it was applied to the benzyl alcohol oxidation reaction. S-MC was synthesized by a templating method using SBA-15 and p-toluenesulfonic acid as a templating agent and a carbon precursor, respectively. S-MC was then modified to have a positive charge, and thus, to provide sites for the immobilization of PMo10V2. By taking advantage of the overall negative charge of [PMo10V2O40]5-, PMo10V2 catalyst was immobilized on the S-MC support as a charge matching component. It was revealed that PMo10V2 species were finely and molecularly dispersed on the S-MC via chemical immobilization. In the vapor-phase oxidation of benzyl alcohol, PMo10V2/S-MC catalyst showed higher conversion of benzyl alcohol and higher yield for benzaldehyde and benzoic acid than unsupported PMo10V2 catalyst. The enhanced catalytic performance of PMo10V2/S-MC was due to fine dispersion of PMo10V2 species on the S-MC via chemical immobilization.
[References]
  1. Sheldon RA, Arends IWCE, Dijksman A, Catal. Today, 57(1-2), 157, 2000
  2. Sheldon RA, Arends IWCE, Brink GJT, Dijksman A, Acc. Chem. Res., 35(9), 774, 2002
  3. Zhan BZ, Thompson A, Tetrahedron, 60(13), 2917, 2004
  4. Mallat T, Baiker A, Chem. Rev., 104(6), 3037, 2004
  5. Choi JH, Kang TH, Bang Y, Song JH, Song IK, Catal. Commun., 55, 29, 2014
  6. Mizuno N, Misono M, Chem. Rev., 98(1), 199, 1998
  7. Youn MH, Park DR, Jung JC, Kim H, Barteau MA, Song IK, Korean J. Chem. Eng., 24(1), 51, 2007
  8. Song IK, Barteau MA, Korean J. Chem. Eng., 19(4), 567, 2002
  9. Mori H, Mizuno N, Misono M, J. Catal., 131(1), 133, 1991
  10. Song IK, Barteau MA, J. Mol. Catal. A-Chem., 212(1-2), 229, 2004
  11. Damyanova S, Dimitrov L, Mariscal R, Fierro JLG, Petrov L, Sobrados I, Appl. Catal. A: Gen., 256(1-2), 183, 2003
  12. Kim H, Jung JC, Song IK, Catal. Surv. Asia, 11(3), 114, 2007
  13. Sulikowski B, Rachwalik R, Appl. Catal. A: Gen., 256(1-2), 173, 2003
  14. Pozniczek J, Kulszewicz-Bajer I, Zagorska M, Kruczała K, Dyrek K, Bielanski A, Pron A, J. Catal., 132(2), 311, 1991
  15. Hasik M, Pozniczek J, Piwowarska Z, Dziembai R, Bielanski A, Pron A, J. Mol. Catal. A-Chem., 89(3), 329, 1994
  16. Nomiya K, Murasaki H, Miwa M, Polyhedron, 5(4), 1031, 1986
  17. Kim H, Kim P, Lee KY, Yeom SH, Yi J, Song IK, Catal. Today, 111(3-4), 361, 2006
  18. Kim H, Jung JC, Kim P, Yeom SH, Lee KY, Song IK, J. Mol. Catal. A-Chem., 259(1-2), 150, 2006
  19. Stein A, Adv. Mater., 15(10), 763, 2003
  20. Galarneau A, Cambon H, Di Renzo F, Ryoo R, Choi M, Fajula F, New J. Chem., 27(1), 73, 2003
  21. Lee HI, Joo SH, Kim JH, You DJ, Kim JM, Park JN, Chang H, Pak C, J. Mater. Chem., 19(33), 5934, 2009
  22. Kim H, Jung JC, Park DR, Baeck SH, Song IK, Appl. Catal. A: Gen., 320, 159, 2007
  23. Han YJ, Kim JM, Stucky GD, Chem. Mater., 12(8), 2068, 2000
  24. Caravati M, Grunwaldt JD, Baiker A, Phys. Chem. Chem. Phys., 7(2), 278, 2005