Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.3, 367-373, 2016
플라스틱 부유 분진의 폭발특성과 화염전파속도
Explosion Characteristics and Flame Velocity of Suspended Plastic Powders
산업분야에서 사용되는 플라스틱 분진은 대부분 가연성이며 화재폭발사고 위험성이 있다. 그러나 산업현장에서 안전한 취급을 위해 활용할 수 있는 폭발특성 자료는 매우 적다. 본 연구에서는 사업장에서 취급하는 다양한 플라스틱 분진 의 폭발특성을 실험적으로 조사하여 관련 자료와 안전정보를 제공하는 것을 목적으로 수행하였다. 이를 위해 20 L 분진폭발시험장치를 사용하여 각종 폭발특성값을 측정하였다. 그 결과 ABS (209.8 μm), PE (81.8 μm), PBT (21.3 μm), MBS (26.7 μm) 및 PMMA (14.3 μm)시료의 분진폭발지수(Kst)는 각각 62.4, 59.4, 70.3, 303, 203.6[bar·m/s]의 값이 얻어졌다. 또한 플라스틱 분진폭발에 의한 피해예측을 위하여 분진폭발압력에서 분진의 연소속도가 일정하다고 가정하고 최대압력소요시간 및 화염도달시간을 고려한 화염전파속도모델을 통하여 분진폭발시의 화염전파속도를 추정하였다.
Many of plastic powders handled in industry are combustible and have the hazard of dust fire and explosion accidents. However poor information about the safe handling has been presented in the production works. The aim of this research is investigated experimentally on explosive characteristics of various plastic powders used in industry and to provide additional data with safety informations. The explosibility parameters investigated using standard dust explosibility test equipment of Siwek 20-L explosion chamber. As the results, the dust explosion index (Kst) of ABS (209.8 μm), PE (81.8 μm), PBT (21.3 μm), MBS (26.7 μm) and PMMA (14.3 μm) are 62.4, 59.4, 70.3, 303 and 203.6 [bar·m/s], respectively. And flame propagation velocity during plastic dust explosions for prediction of explosive damage was estimated using a flame propagation model based on the time to peak pressure and flame arrival time in dust explosion pressure assuming the constant burning velocity.
[References]
  1. Database for Major Industrial Accidents, Korea Occupational Safety and Health Agency(1988~2015).
  2. Kao CS, Duh YS, J. Loss Prev. Process Ind., 15(3), 223, 2002
  3. Eckhoff RK, Dust Explosions in the Process Industries (3rd ed.), Amsterdam: Gulf Professional Publishing(2003).
  4. Reniers G, Cozzani V, Domino Effects in the Process Industries: Modelling, Prevention and Managing, Elsevier(2013).
  5. CSB, Final Report on West Pharmaceutical Dust Explosion Accident, The U.S. Chemical Safety Board(2004).
  6. Gao W, Yu JL, Zhang XY, Li J, Wang B, Powder Technol., 283, 406, 2015
  7. Hertzberg M, Zlochower IA, Cashdollar KL, “Volatility Model for Coal Dust Flame Propagation and Extinguishment,” 21st International Symposium on Combustion, The Combustion Institute, 325-333(1988).
  8. Cashdollar KL, Hertzberg M, Zlochower IA, “Effect of Volatility on Dust Flammability Limits for Coals, Gilsonite and Polyethylene,” 22st International Symposium on Combustion, The Combustion Institute, 1757-1765(1989).
  9. Cashdollar KL, J. Loss Prev. Process Ind., 13(3), 183, 2000
  10. Duh YS, Ho TC, Chen JR, Kao CS, Polymer, 2(3), 174, 2010
  11. Horton MD, Goodson FP, Smoot LD, Combust. Flame, 28, 187, 1977
  12. Proust C, Veyssiere B, Combust. Sci. Technol., 62, 149, 1988
  13. Mazurkiewicz J, Jarosinski J, “Investigation of a Laminar Cornstarch Dust-air Flame Front,” Proceedings of the 6th International Colloquium on Dust Explosions, Shenyang: Northeastern University Press, 179-185(1994).
  14. Glinka W, Wang X, Wolanski P, Xie L, “Velocity and Structure of Laminar Dust Flames,” Proceedings of the 7th International Colloquium on Dust Explosions, Bergen, Norway, 61-68(1996).
  15. Krause U, Kasch T, Gebauer B, “Velocity and Concentration Effects on the Laminar Burning Velocity of Dust-air Mixtures,” Proceedings of the 7th International Colloquium on Dust Explosions, Bergen, Norway, 51-54(1996).
  16. Han OS, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T, J. Loss Prev. Process Ind., 13(6), 449, 2000
  17. Dahoe AE, de Goey LPH, J. Loss Prev. Process Ind., 16(6), 457, 2003
  18. Proust C, J. Loss Prev. Process Ind., 19(1), 89, 2006
  19. Han OS, Korean Chem. Eng. Res., 47(5), 572, 2009
  20. Lewis B, von Elbe G, Combustion, Flames and Explosions of Gases (3rd ed.), Orlando, FL: Academic Press (1987).
  21. Veynante D, Vervisch L, Prog. Energy Combust. Sci., 28(3), 193, 2002
  22. Tezok FI, Kauffman CW, Sichel M, Nichols JA, Progress in Astronautics and Aeronautics, 105, 184, 1986
  23. Van der, Wel P, Ignition and Propagation of Dust Explosions, Delft Univ. Press, Netherlands(1993).
  24. Dahoe AE, Zevenbergen JF, Lemkowitz SM, Scarlett B, J. Loss Prev. Process Ind., 9(1), 33, 1996
  25. Han OS, Han IS, Choi YR, Korean Chem. Eng. Res., 47(6), 705, 2009
  26. Han OS, Han IS, Choi YR, Lee KW, KIGAS, 15(4), 7, 2011
  27. ASTM E1226, Standard Test Method for Pressure and Rate of Pressure Rise for Combustible Dusts, The American Society for Testing and Materials(1988).
  28. Bartknecht W, Dust-Explosions, Course, Prevention, Protection, Springer-Verlag Berlin, Heidelberg, New York(1989).
  29. Wu HC, Ou HJ, Hsiao HC, Shih TS, Aerosol and Air Quality Research, 10, 38, 2010