Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.3, 350-359, 2016
기체 블로우 다운의 동적 모델링 및 분석
Dynamic Modeling & Analysis of Vapor Phase Blowdown of Depressurized Vessel
본 연구는 vessel blowdown 시 발생하는 온도와 압력 변화를 보다 정확히 예측하기 위하여 기존에 개발된 dynamic model을 기반으로 새로운 모델을 개발하고, 개발한 모델의 정확도를 높이기 위하여 vessel 내부의 흐름이 층류일 때와 난류일 때를 모두 고려하여 vessel 벽면으로부터 기체로의 열 전달량을 계산하였다. 효율적인 열역학 계산을 위해 일체의 계산식은 압력이 감소하는 단계 별로 나누어 진행하였으며 계산의 부담을 덜어주면서 계산의 정확도를 유지하기 위한 압력변화 size를 결정하였다. 개발한 모델에 Peng-Robinson equation과 Soave-Redlich-Kwong equation을 적용하여 각각의 경우에 따른 결과의 차이를 비교하였다. 마지막으로 모델의 검증을 위해 Haque et al.의 실험조건을 동일하게 적용하여 실험 결과와 시뮬레이션 결과를 비교 하였으며, 이를 통해 모델의 정확도를 입증하였다.
For accurate estimation over the change of pressure and temperature of the vessel during blowdown period, a new dynamic blowdown model was developed in this work. In particular, heat transfer from the vessel wall to discharge gas at both laminar or turbulent flow in the vessel was embedded to the model to increase the accuracy of blowdown estimation. For thermodynamics, the whole blowdown period was discretized into finite pressure decrement steps, and the step size was adjusted so that the calculation can be more efficiently carried out, while maintaining the model’s accuracy. Both Peng-Robinson and Soave-Redlich-Kwong equation of states were applied to the model, and the results were compared each other. Finally, the simulation results was compared with Haque and coworkers’ experimental results, and it proved high accuracy of the model.
[References]
  1. D'Alessandro V, Giacchetta G, Leporini M, Marchetti B, Terenzi A, Chem. Eng. Sci., 126, 719, 2015
  2. Wong MA, “Development of a Mathematical Model for Blowdown of Vessels Containing Multi-component Hydrocarbon Mixtures,” Ph.D. Dissertation, the University College London, Torrington Place, London(1998).
  3. Chen JR, Richardson SM, Saville G, Chem. Eng. Sci., 50(4), 695, 1995
  4. Mahgerefteh H, Wong SMA, Comput. Chem. Eng., 23(9), 1309, 1999
  5. Overa SJ, Stange E, Salater P, “Determination of Temperatures and Flare Rates During Depressurization and Fire,” Proceedings of 72th GPA Annual Convention, 235-235(1993).
  6. Mahgerefteh H, Falope GBO, Oke AO, AIChE J., 48(2), 401, 2002
  7. Standing MB, Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems: PVT for Engineers, California Research Corp.(1951).
  8. Hanley HJ, McCarty RD, Haynes WM, J. Phys. Chem. Ref Data, 3(4), 979, 1974
  9. Escobedo J, Mansoori GA, AIChE J., 42(5), 1425, 1996
  10. Winters WS, Evans GH, Rice SF, Greif R, Int. J. Heat Mass Transf., 55(1), 8, 2012
  11. Green DW, Perry’s Chemical Engineers' Handbook, McGrawhill New York(2008).
  12. Richardson S, Saville G, Fisher S, Meredith A, Dix M, Process Saf. Environ. Protect., 84(1), 40, 2006
  13. Bird RB, Appl. Mech. Rev., 55(1), R1, 2002
  14. Haque A, Richardson S, Saville G, Chamberlain G, J. Loss. Prev. Process. Ind., 3(1), 4, 1990
  15. Haque M, Richardson S, Saville G, Process Saf. Environ. Protect., 70(B1), 3, 1992
  16. Twu CH, Sim WD, Tassone V, Chem. Eng. Prog., 98(11), 58, 2002
  17. Speranza A, Terenzi A, Series on Advances in Mathematics for Applied Sciences, 69, 508, 2005
  18. Haque M, Richardson S, Saville G, Chamberlain G, Shirvill L, Process Saf. Environ. Protect., 70(B1), 10, 1992
  19. Clark G, Zero-dimensional model of compressible gas flow in networks of pressure vessels: Program TRIC, (1983).
  20. Charton S, Blet V, Corriou JP, Chem. Eng. Sci., 51(2), 295, 1996
  21. Chen JR, Richardson SM, Saville G, Chem. Eng. Sci., 50(13), 2173, 1995
  22. Dutton JC, Coverdill RE, Int. J. Eng. Edu., 13(2), 123, 1997