Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.3, 315-319, 2016
통계학적 최적화를 이용한 아마란스 잎으로부터 폴리페놀 열수추출조건 최적화
Optimization of Extraction Conditions of Polyphenolic Compounds from Amaranth Leaf using Statistically-based Optimization
아마란스 종실 생산의 부산물인 아마란스 잎으로부터 폴리페놀 추출 증대를 위해 열수추출의 주요 공정조건인 추출시간, 추출온도와 에탄올 농도 중심합성법을 이용해 최적화하였다. 폴리페놀의 추출은 추출온도와 시간이 증가함에 따라 증가하였으며 추출에 에탄올 농도와 추출시간이 유의한 효과를 보였다(p<0.05). 열수추출의 에탄올 농도는 61.6 (v/v%) 에서 최대 폴리페놀 추출성능을 보이며 농도 증가에 따라 감소하는 경향을 보였다. 중심합성법에 의해 제시 된 2차 회귀방정식의 예측값과 실험값을 비교했을 때 매우 높은 합치도(R2=0.9566) 를 보였으며 추출온도 90.1 °C, 추출시간 50min과 에탄올 61.6 (v/v%) 공정조건에서 최대 농도인 12.6 mg GAE/g DM 폴리페놀을 얻을 수 있었다.
This study examined the optimization of hot-water extraction conditions for maximizing the total polyphenol compounds (TPC) extracted from amaranth leaf. The effects of three independent variables, including extraction temperature, extraction time and ethanol concentration on TPC were investigated using central composite design (CCD). The concentration of TPC increased with increased levels of extraction temperature and time. The extraction temperature and the ethanol concentration showed the significant effect on TPC production (p<0.05). The predicted values at the optimized condition were acceptable when compared to the experimental values (R2=0.9566). The optimum extraction conditions were as follows: temperature of 90.1 ℃, time of 50 min and ethanol concentration of 61.6% (v/v) for the maximum TPC of 12.6 mg GAE/g DM.
[References]
  1. Chon SW, Kim DK, Kim YM, Korean J. Plant Resour., 26, 159, 2013
  2. Kang CD, Park TH, Sim SJ, Korean Chem. Eng. Res., 44(1), 46, 2006
  3. Jeong GT, Lee KM, Park DH, Korean Chem. Eng. Res., 44(1), 81, 2006
  4. Lee YJ, Kim EO, Choi SW, J. Korea Soc. Food Sci. Nutr., 40, 517, 2011
  5. Jeong GT, Yang HS, Park SH, Park DH, Korean J. Biotechnol. Bioeng., 22, 222, 2007
  6. Hong SY, Cho KS, Jin YI, Yeon YH, Kim SJ, Nam JH, Jeong JC, Kwon OK, Sohn HB, Korean J. Crop Sci., 59, 16, 2014
  7. Lopez-Mejia A, Lopez-Malo A, Palou E, Ind. Crop. Prod., 53, 55, 2014
  8. Milutinovic M, Radovanovic N, Corovic M, Siler-Marinkovic S, Rajilic-Stojanovic M, Dimitrijevic-Brankovic S, Ind. Crop. Prod., 77, 333, 2015
  9. Min DL, Lim SW, Ahn JB, Choi YJ, Korean J. Food Sci. Technol., 42, 733, 2010
  10. Kim JW, Korean Chem. Eng. Res., 50(5), 879, 2012
  11. Adil IH, Cetin HI, Yener ME, Bayindirli A, J. Supercrit. Fluids, 43(1), 55, 2007
  12. Park JN, Ali-Nehari A, Woo HC, Chun BS, Korean J. Chem. Eng., 29(11), 1604, 2012
  13. Kim YS, Kim RS, Moon JH, Ji JR, Choi HD, Park YK, Korean Soc. Food Sci. Technol., 41, 245, 2009
  14. Peiro S, Gordon MH, Blanco M, Perez-Llamas F, Segovia F, Almajano MP, Antioxidants, 3, 684, 2014
  15. Lee HJ, Do JR, Kwon JH, Kim HK, Korean Soc. Food Sci. Nutr., 41, 390, 2012
  16. Kong HN, Qi ES, Li H, Li G, Zhang X, Appl. Energy, 87(7), 2156, 2010
  17. Kasuya F, Tsuji T, Gas Sep. Purif., 5(4), 242, 1991
  18. DUTTA NN, PATIL GS, Gas Sep. Purif., 9(4), 277, 1995
  19. Hogendoorn JA, van Swaaij WPM, Versteeg GF, Chem. Eng. J., 59(3), 243, 1995
  20. Poddar SK, “Design, Capital Cost and Economics for the Low Rank Coal Study (Volume 1A): Direct Coal Liquefaction-Low Rank Coal Study,” U.S. Department of Energy/Bechtel Co., Pittsburgh, Pennsylvania(1995).
  21. Ahn ES, Jang SC, Choi DY, Kim SH, Choi DK, Korean Chem. Eng. Res., 44(5), 460, 2006
  22. Ma JH, Li L, Ren J, Li RF, Sep. Purif. Technol., 76(1), 89, 2010
  23. Choi J, Kim KH, Park JY, Ko DJ, Baek JH, Kim S, Lim DH, Lim K, “Adsorbent for Carbon Monoxide and Method for Preparing Thereof,” Korea Patent No. KR 2015-0008270 A(2015).
  24. Sakuraya T, Fujii T, Matsui S, Hayashi S, “Methods for Obtaining High-Purity Carbon Monoxide,” European Patent No. EP 0129 444 B1(1990).
  25. Kim H, Lee J, Lee S, Han J, Lee IB, Korean Chem. Eng. Res., 53(1), 31, 2015
  26. Do TX, Lim YI, Jang S, Chung HJ, Bioresour. Technol., 189, 224, 2015
  27. Park YC, Lee TY, Park JH, Ryu HJ, Korean Chem. Eng. Res., 47(1), 65, 2009
  28. Lee JH, Kim JH, Lee IY, Jang KR, Shim JG, Korean Chem. Eng. Res., 49(2), 244, 2011
  29. Chun DH, Kim SD, Rhim YJ, Lee SH, Korean Chem. Eng. Res., 49(5), 639, 2011
  30. Yoo YD, Kim SH, Cho W, Mo Y, Song T, Korean Chem. Eng. Res., 52(6), 796, 2014
  31. Do TX, Lim YI, Yeo H, Energy Conv. Manag., 80, 525, 2014
  32. Do TX, Lim YI, Yeo H, Lee UD, Choi YT, Song JH, Energy, 70, 547, 2014
  33. Christensen P, Dysert LR, “Cost Estimate Classification System,” AACE (American Association of Cost Engineering) International, Practice No. 17R-97(2011).
  34. Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Bhattacharyya D, Analysis, Synthesis and Design of Chemical Processes, 4th ed., Prentice Hall, New York(2012).
  35. Towler G, Sinnott R, Chemical Engineering Design, 2nd ed., Elsevier, Boston(2008).
  36. Peters MS, Timmerhaus KD, West RE, Plant Design and Economics for Chemical Engineers, 5th ed., McGraw-Hill, New York(2003).
  37. Lozowski D, Ondrey G, Jenkins S, Bailey MP, Chemical Engineering Plant Cost Index (CEPCI), Chem. Eng., Access Intelligence LLC(2004-2013).
  38. Perry RH, Green DW, Perry’s Chemical Engineers' Handbook: Capter 12. Psychrometry, Evaporative Cooling, and Solids Drying, 7th ed., McGraw-Hill, New York(1999).