Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.3, 293-298, 2016
친수성 실리카와 하이드로겔 전해질이 적용된 활성탄 수퍼커패시터의 전기화학적 특성
Electrochemical Properties of Activated Carbon Supercapacitors Adopting Hydrophilic Silica and Hydrogel Electrolytes
6M의 KOH 수계 전해액에 potassium polyacrylate (PAAK)가 3 wt.% 포함된 하이드로겔 전해질을 제조하고, 이에 친수성 실리카 OX50을 1 wt.% 포함시킨 하이드로겔 전해질을 함께 제조하고, 이를 Scimat 분리막에 코팅 및 건조하여 활성탄 수퍼커패시터의 자기지지체 전해질/분리막으로 사용하여 그 실리카 첨가효과를 조사하였다. 실리카 입자는 다공성 분리막 지지체의 표면기공에 균일하게 분포하여 하이드로겔의 이온전도도와 전기화학적 안정성을 향상시켰으며 이에 따라 고속스캔 조건에서도 활성탄 수퍼커패시터의 비축전용량이 비교적 높게 유지되었는데, 이는 실리카가 포함된 하이드로겔 전해질이 활성탄 전극과 분리막 사이에서의 계면저항이 감소하기 때문이다.
A hydrogel electrolyte consisting of 6 M KOH aqueous solution, potassium polyacrylate (PAAK, 3 wt.%), and a hydrophilic silica OX50 (1 wt.%) was prepared to use as an electrolyte medium coated on a Scimat separator of activated carbon supercapacitor. The silica particle distributed homogeneously on surface pores of the separator to increase ionic conductivity and electrochemical stability of the hydrogel electrolyte. The silica addition also involved superior specific capacitance even at higher scan rates due to decrease in interfacial resistance between hydrogel electrolyte and activated carbon electrode.
[References]
  1. Simon P, Gogotsi Y, Dunn B, Science, 343(6176), 1210, 2014
  2. Yan J, Wang Q, Wei T, Fan Z, Adv. Energy Mater, art. no. 1300816, 4(4), 2014
  3. Wang G, Zhang L, Zhang J, Chem. Soc. Rev., 41(2), 797, 2012
  4. Yu Z, Tetard L, Zhai L, Thomas J, Energy Environ. Sci., 8(3), 702, 2015
  5. Beguin F, Presser V, Balducci A, Frackowiak E, Adv. Mater., 26(14), 2219, 2014
  6. Nishiyama Y, Satoh M, J. Polym. Sci. B: Polym. Phys., 38(21), 2791, 2000
  7. Iwakura C, Wada H, Nohara S, Furukawa N, Inoue H, Morita M, Electrochem. Solid State Lett., 6(2), A37, 2003
  8. Nohara S, Wada H, Furukawa N, Inoue H, Morita M, Iwakura C, Electrochim. Acta, 48(6), 749, 2003
  9. Wada H, Nohara S, Furukawa N, Inoue H, Sugoh N, Iwasaki H, Morita M, Iwakura C, Electrochim. Acta, 49(27), 4871, 2004
  10. Nohara S, Toshihide AA, Wada H, Furukawa N, Inoue H, Sugoh N, Iwasaki H, Iwakura C, J. Power Sources, 157(1), 605, 2006
  11. Lee KT, Wu NL, J. Power Sources, 179(1), 430, 2008
  12. Lee KT, Lee JF, Wu NL, Electrochim. Acta, 54(26), 6148, 2009
  13. Nam HS, Wu NL, Lee KT, Kim KM, Yeom CG, Hepowit LR, Ko JM, Kim JD, J. Electrochem. Soc., 159(6), A899, 2012
  14. Kim KM, Nam JH, Lee YG, Cho WI, Ko JM, Curr. Appl. Phys., 13(8), 1702, 2013
  15. Ko JM, Nam JH, Won JH, Kim KM, Synth. Met., 189(1), 152, 2014
  16. Latifatu M, Ko JM, Lee YG, Kim KM, Jo J, Jang Y, Yoo JJ, Kim JH, Korean Chem. Eng. Res., 51(5), 550, 2013
  17. Yoon CS, Ko JM, Latifatu M, Lee HS, Lee YG, Kim KM, Won JH, Jo J, Jang Y, Kim JH, Korean Chem. Eng. Res., 52(5), 553, 2014
  18. Lee HS, Kim KM, Jang Y, Kim KY, Yu JJ, Kim JH, Ko JM, J. Korean Electrochem. Soc., 18(3), 115, 2015
  19. Kim KM, Latifatu M, Lee YG, Ko JM, Kim JH, Cho WI, J. Electroanal. Chem., 32(2-3), 146, 2014
  20. Kim KM, Hepowit LR, Kim JC, Lee YG, Ko JM, Korean J. Chem. Eng., 32(4), 717, 2015
  21. http://www.aerosil.com/.
  22. Cho WJ, Yeom CG, Kim BC, Kim KM, Ko JM, Yu KH, Electrochim. Acta, 89, 807, 2013
  23. Jung HW, Hamenu L, Lee HS, Latifatu M, Kim KM, Ko JM, Curr. Appl. Phys., 15(4), 567, 2015
  24. Lee EJ, Lee YJ, Kim JK, Lee M, Yi J, Yoon JR, Song JC, Song IK, Mater. Res. Bull., 70, 209, 2015
  25. Calvo EG, Lufrano F, Staiti P, Brigandi A, Arenillas A, Menendez JA, J. Power Sources, 241, 776, 2015
  26. Obreja VVN, Physica E, 40(7), 2596, 2008
  27. Davies A, Yu AP, Can. J. Chem. Eng., 89(6), 1342, 2011
  28. Gu W, Yushin G, WIREs Energy Environ., 3(5), 424, 2014
  29. Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y, J. Phys. Chem. B, 109(15), 7330, 2005