Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.5, 711-718, 2000
펄스 코로나 방전 공정에 의한 NOx 제거시의 플라즈마 화학 및 미립자 특성에 대한 수치분석
Numerical Analysis on Plasma Chemistry and Particle Characteristics in NOx Removal by Pulsed Corona Discharge Process
NOx 제거용 펄스 코로나 방전 공정에서 공정변수 변화가 플라즈마 화학 및 입자 생성과 성장에 미치는 영향을 모델식을 사용하여 분석하였으며 공정변수로서 초기 NO 농도, 초기 H2O 농도, 전자 농도 등의 영향을 조사하였다. 펄스 코로나 방전 공정에서 대부분의 NO는 NO2로 전환된 후 HNO3로 산화되었으며 HNO3는 NH3와 반응하여 NH4NO3와 같은 입자상 물질을 생성하였다. 초기 NO 농도가 증가할수록, 초기 H2O 농도와 전자 농도가 감소할수록, NOx 제거가 느리게 진행되었다. 초기 NO 농도가 증가함에 따라 초기에 공급된 NO를 소모시키기 위한 NH3 양은 증가하게 되므로 펄스 코로나 방전 반응기 내에서 NH3는 빠르게 소모되었다. 반응기 초반부에서는 초기에 공급된 NO의 소모반응에 의해 입자들이 빠르게 생성되므로 입자 농도와 표준편차는 빠르게 증가하였으며 초기에 공급된 NO가 모두 소모된 후에는 입자 농도와 표준편차는 감소하였다. 새로이 생성된 NOx의 소모반응에 의한 입자 생성량과 입자 응집에 의한 소모량이 균형을 이루면서 입자 농도는 느리게 감소하였으며 표준편차는 느리게 증가하였다. NH3가 모두 소모된 후부터는 입자 생성반응이 종결되므로 입자 충돌에 의해 입자 농도와 표준편차는 매우 빠른 속도로 감소하였고 입자들의 평균 크기는 빠르게 증가하였다. 본 연구에서 계산한 입자 크기는 발표된 문헌의 실험 결과와 비교적 잘 맞았으며 입자 특성에 대한 결과는 좀더 효율적인 펄스 코로나 방전 공정 개발 및 입자 포집 장치 제작에 중요한 기초 자료가 될 것으로 기대된다.
We analyzed the plasma chemistry, particle formation and growth in the pulsed corona discharge process(PCDP) to remove NOx and investigated the effects of several process variables (initial concentrations of NO, NH3 and H2O and electron concentration). In the PCDP, most of NO is converted into NO2 and, later, into HNO3 which reacts with NH3 to form NH4NO3 particles. As the initial NO concentration increases or as the initial H2O concentration and the electron concentration decrease, it takes longer reactor length to remove the NOx. With the increase of initial NO concentration, more NH3 is consumed to remove the NO initially supplied and NH3 disappears more quickly in the PCDP. In the beginning of the reactor, the particle concentration and the standard deviation of particle size distribution increase quickly because of fast particle formation from the NO initially supplied. The particle concentration and the standard deviation decrease in the PCDP where the NO initially supplied is all consumed. Later, the particle concentration decreases slowly by the balance of disappearance rate of particles by coagulation and generation rate from the NO newly formed and the NO2 by N2O5 decomposition reaction. New particle formation stops after the NH3 is all consumed and the particle concentration and the standard deviation drop quickly by coagulation between particles, but the average particle diameter grows quickly. The predicted particle diameter was in close agreement with the published experimental result. The information on the particle characteristics can be the basic raw materials to develop more efficient PCDP and particle collection equipments.
[References]
  1. Chang JS, J. Aerosol Sci., 20, 1087, 1989
  2. Marnix A, vanHardeveld R, vanVeldhuizen EM, Plasma Chem. Plasma Process., 17, 4, 1997
  3. Ohkubo T, Kanazawa S, Nomoto Y, Chang JS, Adachi T, IEEE Trans. Ind. Appl., 30(4), 856, 1994
  4. Atkinson R, Baulch DL, Coa RA, Hampson RF, Kerr JA, Troe J, J. Phys. Chem. Ref. Data, 26, 6, 1997
  5. Choi H, Ham SW, Nam IS, Kim YG, Sim JH, Ha BH, HWAHAK KONGHAK, 34(1), 91, 1996
  6. Mizuno A, Shimizu K, Chakrabarki A, Dascalescu L, Furuta S, IEEE Trans. Ind. Appl., 31(5), 957, 1995
  7. Chakrabarti A, Mizuno A, Shimizu K, Matsuoka T, Furuta S, IEEE Trans. Ind. Appl., 31(3), 500, 1995
  8. Chang JS, Laeless PA, Yamamoto T, IEEE Trans. Plasma Sci., 19, 1102, 1991
  9. Penetrante BM, "Non-Thermal Techniques for Pollution Control, Part A: Overview, Fundamentals and Supporting Technologies," Penetrante B.M. and Schulthesis, S.E., Eds. Springer-Verlag, Berlin, 1993
  10. Urashima K, Chang JS, Ito T, IEEE Trans. Ind. Appl., 33(4), 879, 1997
  11. Penetrante BM, Hsiao MC, Merrite BT, Vogtlin GE, Wallman PH, IEEE Trans. Plasma Sci., 23, 679, 1995
  12. Masuda S, Nakao H, IEEE Trans. Ind. Appl., 26(2), 374, 1990
  13. Oda T, Takahashi T, Masuda S, IEEE Trans. Ind. Appl., 32, 227, 1996
  14. Smulders HWM, vanHeesch EJM, vanPaasen SVB, IEEE Trans. Plasma Sci., 26(5), 1476, 1998
  15. Vanveldhuizen EM, Rutgers WR, Bityurin VA, Plasma Chem. Plasma Process., 16(2), 227, 1996
  16. Amirov RH, Chae JO, Dessiaterik YN, Filimonova EA, Zhelezniak MB, Jpn. J. Appl. Phys., 37, 3521, 1998
  17. Lowke JJ, Morrow R, IEEE Trans. Plasma Sci., 23(4), 661, 1995
  18. Mok YS, Ham SW, Chem. Eng. Sci., 53(9), 1667, 1998
  19. Mok YS, Ham SW, Nam IS, IEEE Trans. Plasma Sci., 26(5), 1556, 1998
  20. Ham SW, Park HH, Mok YS, HWAHAK KONGHAK, 37(5), 759, 1999
  21. Friedlander SK, "Smoke, Dust and Haze: Fundamentals of Aerosol Behavior," Wiley, New York, 1977
  22. Hyun BS, Kim KS, HWAHAK KONGHAK, 34(2), 243, 1996
  23. Chae BS, Kim KS, HWAHAK KONGHAK, 37(6), 821, 1999
  24. Kim KS, Pratsinis SE, AIChE J., 34, 912, 1988
  25. Pratsinis SE, Kim KS, J. Aerosol Sci., 1, 101, 1989
  26. Lee KW, J. Colloid Interface Sci., 92, 315, 1983
  27. Daito S, Tochikubo F, Watanabe T, Proceedings of the 13th International Symposium on Plasma Chemistry, Beijing, China, 1997