Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.5, 683-690, 2000
RTCVD 반응기에서 Ni 촉매를 이용한 탄소나노튜브의 성장
Growth of Carbon Nanotubes Using Ni Catalysts in RTCVD Reactor
RTCVD(rapid thermal chemical vapor deposition) 반응기에서 Ni 촉매를 이용하여 탄소나노튜브(carbon nanotube, CNT)를 성장시켰다. 탄소나노튜브의 최적성장조건을 찾기 위하여 촉매 기판의 종류, 성장온도와 시간, 촉매의 함량, 희석기체의 종류를 변환시켜가며 성장하여 그 특성을 분석하였다. 그 결과 Ni/Al2O3 디스크형 펠렛을 기판으로 사용하여 아세틸렌(C2H2) 원료기체와 수소(H2) 희석기체를 각각 10 sccm과 100 sccm을 공급하면서 600 ℃, 1 torr에서 30분 동안 성장시킬 때 탄소나노튜브가 가장 잘 성장함을 알 수 있었다. 성장된 탄소나노튜브는 단일벽 탄소나노튜브(single-wall carbon nanotube, SWNT)였다. 성장 중 반응기 내의 기체를 분석한 결과 성장온도에서 C2H2가 기상에서 분해되어 탄소나노튜브의 성장에 참여하는 것이 아니고 C2H2 기체 분자가 Ni 촉매 표면에 흡착된 후 탄소 원자로 분해되어 탄소나노튜브 성장반응에 참여하는 것임을 알 수 있었다.
Carbon nanotubes were grown using nickel catalyst in a rapid thermal chemical vapor deposition(RTCVD) reactor. The optimum growth condition of carbon nanotubes was examined as functions of catalyst type, growth temperature and time, catalyst content, and dilution gas. It was observed that large amount of carbon nanotubes was grown on a Ni/Al2O3 disctype pellet at 600 ℃ and 1 torr for 30 min with 10 sccm C2H2 and 100 sccm H2, respectively. The grown nanotubes were identified to be a single-wall carbon nanotube. The gas analysis during the growth showed that C2H2 was not decomposed in gas phase at the growth temperature. The C2H2 molecules were directly adsorbed on the surface of nickel catalyst and decomposed into carbon atoms which participated in the growth of carbon nanotubes.
[References]
  1. Iijima, Nature, 354, 56, 1991
  2. Sauvajol JL, Anglaret E, Rols S, Journet C, Goze C, Bernier P, Maser WK, Munoz E, Benito AM, Martinez MT, Coddens G, Dianoux AJ, Synth. Met., 103(1-3), 2537, 1999
  3. Hassanien A, Tokumoto M, Kumazawa Y, Kataura H, Maniwa Y, Suzuki S, Achiba Y, Appl. Phys. Lett., 73(26), 3839, 1998
  4. Saito Y, Hamaguchi K, Hata K, Tohji K, Kasuya A, Nishina Y, Uchida K, Tasaka Y, Ikazaki F, Yumura M, Ultramicroscopy, 73, 1, 1998
  5. Che G, Lakshmi BB, Fisher ER, Martin CR, Nature, 393(28), 346, 1998
  6. Soh HT, Quate CF, Morpurgo AF, Marcus CM, Kong J, Dai H, Appl. Phys. Lett., 75(5), 627, 1999
  7. Nutzenadel C, Zuttel A, Chartouni D, Schlapbach L, Electrochem. Solid-State Lett., 2(1), 30, 1999
  8. Han W, Bando Y, Kurashima K, Sato T, Jpn. J. Appl. Phys., 38, L755, 1999
  9. Wong EW, Maynor BW, Burns LD, Lieber CM, Chem. Mater., 8, 2041, 1996
  10. Iijima S, Ajayan PM, Ichihashi T, Phys. Rev. Lett., 69, 3100, 1992
  11. Iijima S, Mater. Sci. Eng., B19, 172, 1993
  12. Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE, Science, 273(5274), 483, 1996
  13. Munoz E, Maser WK, Benito AM, delaFuente GF, Martinez MT, Synth. Met., 103, 2490, 1999
  14. Li W, Zhang H, Wang C, Zhang Y, Xu L, Zhu K, Xie S, Appl. Phys. Lett., 70(20), 2684, 1997
  15. Yudasaka M, Kikuchi R, Matsui T, Ohki Y, Yoshimura S, Ota E, Appl. Phys. Lett., 67(17), 2477, 1995
  16. Huang ZP, Wu JW, Ren ZF, Wang JH, Siegal MP, Provencio PN, Appl. Phys. Lett., 73(26), 3845, 1998
  17. Ren ZF, Huang ZP, Wang DZ, Wen JG, Xu JW, Wang JH, Calvet LE, Chen J, Klemic JF, Reed MA, Appl. Phys. Lett., 75(8), 1086, 1999
  18. Seo YH, Nahm KS, Suh EK, Lee HJ, Hwang YG, J. Vac. Sci. Technol. A, 15(4), 2226, 1997
  19. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN, Science, 282(5391), 1105, 1998
  20. Lee CJ, Kim DW, Lee TJ, Choi YC, Park YS, Kim WS, Lee YH, Choi WB, Lee NS, Kim JM, Choi YG, Yu SC, Appl. Phys. Lett., 75(12), 1721, 1999
  21. Bandow S, Asaka S, Phys. Rev. Lett., 80, 3779, 1998
  22. Pimenta MA, Marucci A, Empedocles SA, Bawendi MG, Hanlon EB, Rao AM, Eklund PC, Smalley RE, Dresselhaus G, Dresslhaus MS, Phys. Rev., B, Condens. Matter, 58, R16016, 1998
  23. Pocsik I, Hundhausen M, Koos M, Ley L, J. Non-Cryst. Solids, 227, 1083, 1998
  24. Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS, Science, 275(5297), 187, 1997
  25. Rao AM, Jorio A, Pimenta MA, Dantas MSS, Saito R, Dresselhaus G, Dresselhaus MS, Phys. Rev. Lett., 84(8), 1820, 2000
  26. Cooper CA, Young RJ, J. Raman Spectrose., 30, 929, 1999
  27. Hafner JH, Cheung CL, Lieber CM, J. Am. Ceram. Soc., 121(41), 9750, 1999
  28. Cassell AM, Raymakers JA, Kong J, Dai HJ, J. Phys. Chem. B, 103(31), 6484, 1999
  29. Laurent C, Flahaut E, Peigney A, Rousset A, New J. Chem., 1229, 1998
  30. Terrones M, Hsu WK, Kroto HW, Walton DRM, Topics Current Chem., 199, 189, 1999
  31. Lee YH, Kim SG, Tomanek D, Phys. Rev. Lett., 78(12), 2393, 1997
  32. Fahmi A, vanSanten RA, Surf. Sci., 371, 53, 1997
  33. Bao S, Hofmann P, Schindler KM, Fritzsche V, Bradshaw AM, Woodruff DP, Casado C, Asensio MC, J. Phys. Condens. Matter, 6, L93, 1994
  34. Abdelrehim IM, Thornburg NA, Sloan JT, Caldwell TE, Land DP, J. Am. Chem. Soc., 117(37), 9509, 1995
  35. Crescenzi LMD, Marucci M, Gunnella R, Castrucci P, Casalboni M, Dufour G, Rochet F, Surf. Sci., 426, 277, 1999
  36. Weyher J, Mater. Sci. Eng., 43, 235, 1978