Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.5, 633-638, 2000
IPA-Water-Entrainer계의 상평형 및 공비증류 공정설계에 관한 연구
Phase Behavior of IPA-Water-Entrainer and Process Design on IPA Azeotropic Distillation Process
국내 공정 산업계의 현재 추세는 단순한 세부설계에서 탈피하여 기본설계능력을 확보하는 방향으로 나아가고 있으나 제반여건의 미비로 산업방향전환에 많은 어려움을 겪고 있다. 이러한 어려움은 대부분이 기본공정설계에 필요한 물성치 및 상평형 D/B 미비와 중요성의 인식에 대한 부족에 기인하고 있다. 본 연구에서는 무수알콜 제조공정, 용매 회수 공정, 환경산업, 화학 및 전자산업 등에서 많이 이용되는 IPA 공비증류공정에 대한 상평형 데이터 구축 및 최적공정조건의 도출을 목적으로 하고 있다. 즉, IPA-Water-Entrainer 시스템의 기-액 및 액-액 상평형 데이터 구축을 위하여 실험을 통하여 측정하였고, 이를 토대로 최적의 액체 활동도모델 계수를 구하였다. 또한 공비증류 공정설계의 근간이 되는 삼성분계 상평형도를 완성하여 IPA 제조공정에서의 순도 및 수율, 조업조건, 적정 공비첨가제 선정 및 IPA 공정의 에너지절약 및 효율성을 증대시킬 수 있는 시스템 구축을 하고자 하였다.
In our chemical process engineering industries, the technology of basic engineering is hindered due to lack of acknowledgement of the importance in the measurement of VLE, VLLE, LLE, physical properties and the development of the thermodynamic database(D/B). IPA azeotropic distillation processes are important for Chemical Engineering in considering separation factors of mixture, recycling the solvent, and the manufacturing the fine chemicals from an industrial standpoint. In azeotropic distillation, a mass separating agent or entrainer, inverts the difference in volatilities between the light and heavy keys, and adds a degree of the freedom to separation process. In this work, LLE data of IPA-Water-Entrainer system are measured. N-hexane, cyclohexane, benzene are used as entrainer for the measurement of LLE. Utilization of these experimental data will be able to develop the thermodynamics D/B and process models. The selection of proper entrainer and optimized the process and operating conditions are also proposed. This work will also provide chemical engineering industries the competitive basis in building the skills and knowledge for basic and detail engineering in our separation processes.
[References]
  1. Wang C, Wong DSH, Ind. Eng. Chem. Res., 37(7), 2835, 1998
  2. Widagdo S, Seider WD, AIChE J., 42(1), 96, 1996
  3. Othmer DF, Tobias PE, Ind. Eng. Chem., 34, 693, 1942
  4. Kyle BG, "Chemical and Process Thermodynamics," 2th, Prentice-Hall, 1992
  5. Joy DS, Kyle BG, Ind. Eng. Chem. Proc. Des. Dev., 9, 24, 1970
  6. Renon H, Prausnitz JM, AIChE J., 14, 135, 1968
  7. Abrams DS, Parusnitz JM, AIChE J., 21, 116, 1975
  8. Katayama H, Ichikawa I, J. Chem. Eng. Jpn., 28(4), 412, 1995
  9. Muller D, Marquardt W, Ind. Eng. Chem. Res., 36(12), 5410, 1997
  10. Castillo FJL, Towler GP, Chem. Eng. Sci., 53(5), 963, 1998
  11. Safrit BT, Westerberg AW, Ind. Eng. Chem. Res., 36(5), 1827, 1997
  12. Hoanh NP, Michael FD, Chem. Eng. Sci., 45(7), 1845, 1990
  13. Haddad PO, Edmister WC, J. Chem. Eng. Data, 17, 275, 1975
  14. Sorensen JM, Arlt W, "liquid-Liquid Equilibrium Data Collection," Dechema, 1980
  15. Hooke R, Jeeves TA, J. Assoc. Comp. Mach., 8, 212, 1961