Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.5, 591-596, 2000
금속(Ag, Cu, Co)함유 활성탄소섬유의 기공분포
Pore Size Distribution of Metal(Ag, Cu, Co)-containing Activated Carbon Fibers
Ag, Cu와 Co를 각각 1 wt% 함유시킨 석유 핏치계 활성탄소섬유를 제조하고, 활성화조건에 따른 기공분포를 조사하였다. 금속함유 탄소섬유는 금속을 함유하지 않은 탄소섬유보다 burn-off 경향이 컸는데 이는 금속이 탄소의 활성화를 촉진시켰기 때문이며 Co가 Cu나 Ag보다 크게 촉진시켰다. 각각의 활성화에너지는 93, 141, 175 kJ/mole로 금속을 함유하지 않았을 때의 184 kJ/mole보다 작았다. 1 wt%의 금속을 함유한 활성탄소섬유의 등온흡착곡선은 금속을 함유하지 않은 활성탄소섬유와 마찬가지로 전형적인 Type I을 보이나, Co함유 활성탄소섬유는 hysteresis 현상과 높은 상대압력에서 꼬리가 올라가는 증기공의 특성을 함께 보인다. Ag나 Cu함유 활성탄소섬유는 활성화에너지가 낮았음에도 불구하고 평균 18-20 Å의 미세공이 발달하나 Co함유 활성탄소섬유는 미세공과 함께 30-40 Å 및 200-300 Å의 증기공이 발달되었다.
1 wt% Ag, Cu and Co-containing Activated Carbon Fibers(ACFs) were prepared and the pore size distributions depending on the activation condition were investigated. The burn-offs of metal-containing carbon fibers(CFs) are higher than that of non metal-containing CFs, because the metal accelerates the activation of carbon. Cobalt is better accelerator than copper and silver. Activation energies of three metal-containing CFs were 93, 141 and 175 kJ/mole, respectively, which were lower than that, 184 kJ/mole, of non metal-containing ACF. The isotherms of 1 wt% metal-containing ACFs were typical Type-I such as non metal-containing ACF. However, Co-containing ACF has mesoporous pores with hysteresis loop and rising tag at high relative pressure. Ag and Cu-containing ACFs have the average pore size of 18-20Å in spite of low activation energy, while Co-containing ACF has two mesoporous regions of 30-40Å and 200-300Å with micropores.
[References]
  1. Bansal RC, Donnet JB, Stoekcli HF, "Active Carbon," Marcel Dekker, New York, 1988
  2. Gregg SJ, Sing KSW, "Adsorption, Surface Area and Porosity," 2nd ed., Academic Press, London, 1982
  3. Donnet JB, Wang TK, Peng JCM, Rebouillat S, "Carbon Fibers," 3rd ed., Marcel Dekker, New York, 1998
  4. Shim JW, Ryu SK, HWAHAK KONGHAK, 36(6), 903, 1998
  5. Hong EH, Jung YH, Lee KH, Korean J. Chem. Eng., 17(2), 237, 2000
  6. Oya A, Yoshida S, Alcaniz-Monge J, Linares-Solano A, Carbon, 33, 1085, 1995
  7. Nakahara M, Abe Y, Oya A, Imamura R, Cazorla-Amoros D, Cazorla-Amoros D, deLecea CSM, 22th Int. Carbon Conference, San Diego, 522, 1995
  8. Oya A, Wakahara T, Yoshida S, Carbon, 31, 1243, 1993
  9. Ryu SK, Kim SY, Gallego N, Edie DD, Carbon, 37, 1619, 1999
  10. Cho TH, Master Dissertation, Chungnam National Univ., Taejon, Korea, 2000
  11. Kim JY, Hong IP, HWAHAK KONGHAK, 32(6), 778, 1994
  12. Lee DW, Lee JK, Rhee BS, Ryu SK, HWAHAK KONGHAK, 27(6), 777, 1989
  13. Djuricic L, Polovina M, 4th Int. Carbon Conference, Baden-Baden, 332, 1986
  14. Sing KSW, Carrot PJM, Roberts RA, Carbon, 25, 59, 1987