Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.2, 278-283, 2016
고분자물질을 이용한 분별침전 공정에서 파클리탁셀의 입자크기 감소
Decreasing Particle Size of Paclitaxel Using Polymer in Fractional Precipitation Process
원료의약품의 활용도를 향상시키기 위하여 입자 크기의 감소는 매우 중요하다. 본 연구에서는 식물세포 유래 항암물질 파클리탁셀의 입자크기 감소를 위하여 친수성 고분자물질을 첨가하여 분별침전을 수행하였다. 고분자물질이 첨가된 분별침전을 통해 입자크기를 감소시킬 수 있었다. 특히 고분자물질 HPMC 2910을 이용한 분별침전의 경우 침전물 성장을 가장 효과적으로 저해함을 알 수 있었다. 고분자물질 HPMC 2910농도 0.2%에서 가장 작은 입자크기의 침전물을 얻을 수 있었는데, 대조군 대비 ~35% 정도로 입자크기를 감소시킬 수 있었다. 또한 파클리탁셀 침전물의 입자크기는 친수성 고분자물질 첨가에 따른 침전용액의 제타전위 절대값에 반비례함을 알 수 있었다.
In this study, we have for the first time applied fractional precipitation with hydrophilic polymer in order to decrease the particle size of the anticancer agent paclitaxel from plant cell cultures. When compared with the case where no hydrophilic polymer was employed, the addition of hydrophilic polymer in fractional precipitation resulted in a decrease in the size of the paclitaxel precipitate. Among the polymers used, HPMC 2910 was the most effective for inhibition of precipitate growth. A polymer concentration of 0.2% (w/v) obtained the smallest particle size. The particle size was reduced by ~35% compared to control. In addition, the precipitate size was inversely correlated with the absolute value of the zeta potential.
[References]
  1. Rowinsky EK, Cazenave LA, Donehower RC, J. Natl. Cancer Inst., 82, 1247, 1990
  2. Schiff PB, Fant J, Horwitz SB, Nature, 277, 655, 1979
  3. Kim GJ, Kim JH, Korean J. Chem. Eng., 32(6), 1023, 2015
  4. Kim JH, Korean J. Biotechnol. Bioeng., 21, 1, 2006
  5. Hsiao JR, Leu SF, Huang BM, J. Oral Pathol. Med., 38, 188, 2009
  6. Rao KV, Hanuman JB, Alvarez C, Stoy M, Pharm. Res., 12, 1003, 1995
  7. Baloglu E, Kingston DG, J. Nat. Prod., 62, 1068, 1999
  8. Choi HK, Son SJ, Na GH, Hong SS, Park YS, Song JY, Korean J. Plant Biotechnol., 29, 59, 2002
  9. Georgiev MI, Weber J, Maciuk A, Appl. Microbiol. Biotechnol., 83(5), 809, 2009
  10. Cho EB, Cho WK, Cha KH, Park JS, Int. J. Pharm., 396, 91, 2010
  11. Yeo SD, Kim MS, Lee JC, J. Supercrit. Fluids, 25(2), 143, 2003
  12. Pyo SH, Kim MS, Cho JS, Song BK, Han BH, Choi HJ, J. Chem. Technol. Biotechnol., 79, 1162, 2005
  13. Prakash K, Jieun R, Kim HM, Kim IS, Kim JT, Kim HI, Cho JM, Yun GA, Lee JH, Asian J. Pharm. Sci., 9, 304, 2014
  14. Ruala J, Eerikaine H, Kauppinen EI, Int. J. Pharm., 284, 13, 2004
  15. Chen X, Young TJ, Sarkari M, Williams III RO, Johnston KP, Int. J. Pharm., 242, 3, 2002
  16. Vehring R, Pharm. Res., 25, 999, 2008
  17. Weers JG, Tarara TE, Clark AR, Expert Opin. Drug Deliv., 4, 297, 2007
  18. Kawashima Y, York P, Adv. Drug Deliv. Rev., 60, 297, 2008
  19. Han MG, Jeon KY, Mun S, Kim JH, Process Biochem., 45, 1368, 2010
  20. Jeon KY, Kim JH, Process Biochem., 44, 736, 2009
  21. Jeon SI, Mun S, Kim JH, Process Biochem., 41, 276, 2006
  22. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Biotechnol. Lett., 22(22), 1753, 2000
  23. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39, 1985, 2004
  24. Lee JY, Kim JH, Korean J. Microbiol. Biotechnol., 40, 169, 2012
  25. Dong Y, Ng WK, Shen S, Kim S, Tan RB, Int. J. Pharm., 375, 84, 2009
  26. Zhang HX, Wang JX, Zhang ZB, Le Y, Shen ZG, Chen JF, Int. J. Pharm., 374, 106, 2009
  27. Gamborg OL, Miller RA, Ojima K, Exp. Cell Res., 50, 151, 1968
  28. Lee CG, Kim JH, Korean Chem. Eng. Res., 52(4), 497, 2014
  29. Dalvi SV, Dave RN, Ind. Eng. Chem. Res., 48(16), 7581, 2009
  30. Labouret AD, Thioune O, Fessi H, Devissaguet JP, Puisieux F, Drug Dev. Ind. Pharm., 21, 229, 1995
  31. Stainmesse S, Orecchioni AM, Nakache E, Puisieux F, Fessi H, Colloid Polym. Sci., 273, 505, 1995
  32. Thioune O, Fessi H, Devissaguet JP, Puisieux F, Int. J. Pharm., 146, 233, 1997
  33. Pouretedal HR, Int. Nano Lett., 4, 103, 2014
  34. Ryu HK, Kim JH, Korean J. Microbiol. Biotechnol., 42, 114, 2014