Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.2, 268-273, 2016
카본블랙이 내첨된 핏치로부터 폴리우레탄 조공제를 이용한 탄소 폼의 제조 및 특성
The Preparation and Property of Carbon Foams from Carbon Black Embedded Pitch Using PU Template
탄소 폼의 기계적 강도를 향상시키기 위하여, PVA 용액에 다양한 함량의 카본블랙 및 메조페이스 핏치를 첨가하여 폴리우레탄 폼에 함침한 후 열처리를 통하여 카본블랙이 첨가된 탄소 폼을 제조하였다. 탄소 폼의 셀 벽의 두께는 첨가된 카본블랙의 함량에 따라 조절되며, 탄소 폼의 압축강도는 셀 벽의 두께가 증가함에 따라 증가되는 것이 확인되었다. 이에 따라 핏치 함량 대비 5 wt%의 카본블랙을 탄소 폼에 첨가하였을 때 가장 높은 0.44 g/cm3의 겉보기 밀도에서 가장 높은 0.22±0.05 MPa의 압축강도가 얻어졌다. 그러나 탄소 폼의 열전도도는 카본블랙이 첨가되었을 때 오히려 감소하는 것으로 나타났다. 이러한 결과는 탄소 폼에 카본블랙 첨가로 인한 흑연 층간 간격(d002)의 증가로 탄소 폼의 열전도도가 오히려 감소되는 것으로 나타났다.
To improve mechanical strength of carbon foams, the carbon black (CB) added carbon foams were fabricated by impregnating different contents of carbon black (CB) and mesophase pitch using polyvinyl alcohol (PVA) solution into polyurethane foam and being followed by heat treatment. The cell wall-thicknesses of carbon foams were controlled by adding amounts of CB, and it was confirmed that the compressive strength of carbon foams was increased as increasing cell wall-thickness. The compressive strength had the highest value of 0.22±0.05 MPa with the highest bulk density of 0.44 g/cm3 when adding 5 wt% CB in carbon foam. However, the thermal conductivity was decreased by adding CB in carbon foam. The results indicated that the thermal conductivities of carbon foams were reduced by increased interlayer spacing (d002) with the addition of CB in carbon foams.
[References]
  1. Kim W, Gong HJ, Elastom. Compos., 43, 39, 2008
  2. Roh JS, Ahn JS, Kim BJ, Jeon HY, Seo SK, Kim SH, Lee SW, J. Korean Inst. Surf. Eng., 42, 95, 2009
  3. Im HG, Kim JH, J. Korean Ind. Eng. Chem., 20(3), 307, 2009
  4. Glazer J, J. Miner. Met. Mater. Soc., 43(6), 7, 1991
  5. Lei S, Guo Q, Shi J, Liu L, Carbon, 48, 2644, 2010
  6. Kyung JJ, J. Korean Ceram. Soc., 44, 622, 2007
  7. Mehta R, Anderson DP, Hager JW, Carbon, 41, 2159, 2001
  8. Klett J, Hardy R, Romine E, Walls C, Burchell T, Carbon, 38, 953, 2000
  9. Yang YL, Gupta MC, Dudley KL, Lawrence RW, Adv. Mater., 17(16), 1999, 2005
  10. Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J, Hahn HT, Chou TW, Itkis ME, Haddon RC, Langmuir, 23(7), 3970, 2007
  11. Shahil KMF, Balandin AA, Nano Lett., 12, 861, 2012
  12. Nah C, Kim WD, Lee S, Korea Polym. J., 9(3), 157, 2001
  13. Li WQ, Zhang HB, Xiong X, Xiao F, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 528(6), 2999, 2001
  14. Sedeh MM, Khodadadi JM, Carbon, 60, 117, 2013
  15. Ji H, Zhang L, Pettes MT, Li H, Chen S, Li S, Piner R, Ruoff RS, Nano Lett., 12, 2446, 2012
  16. Ji JY, Ji HX, Zhang LL, Zhao X, Bai X, Fan XB, Zhang FB, Ruoff RS, Adv. Mater., 25(33), 4673, 2013
  17. Yadav A, Kumar R, Bhatia G, Verma GL, Carbon, 49, 3622, 2011
  18. Im JS, Kim JG, Lee YS, Carbon, 47, 2640, 2009
  19. Moon YE, Yun JM, Kim HI, Lee YS, Carbon Lett., 12, 138, 2011
  20. Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z, Carbon, 45, 1686, 2007
  21. Park SJ, Kim KS, Hong SK, Korean Chem. Eng. Res., 41, 802, 2003
  22. Cho KY, Kim KJ, Riu DH, Carbon Lett., 7, 271, 2006
  23. Manocha SM, Patel K, Manocha LM, Indian J. Eng. Mater. Sci., 17, 338, 2010