Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.2, 262-267, 2016
고효율 염료감응형 태양전지를 위한 탄소나노튜브 기반 나노 하이브리드 상대전극
Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells
본 연구에서는 건식플라즈마 환원방법을 이용하여 다중벽 탄소나노튜브(MWNT) 코팅 층 위에 백금, 금, 백금/금 이종나노입자를 쉽고 균일하게 고정화 시킬 수 있는 방법을 제시한다. 나노입자는 다중벽 탄소나노튜브 위에 안정적이고 균일하게 고정화되어 나노하이브리드 소재가 되며, 이렇게 합성된 나노하이브리드 소재는 염료감응형 태양전지의 상대전극에 적용된다. CV, EIS, Tafel 측정을 통해 준비된 상대전극의 전기화학적 특성을 분석한 결과, PtAu alloy/MWNT 상대전극이 가장 높은 전기화학적 촉매 활성과 전기 전도도를 보여준다. PtAu alloy/MWNT 상대전극을 이용한 염료감응형 태양전지는 7.9%의 에너지 변환 효율을 보임으로써 MWNT (2.6%), AuNP/MWNT (2.7%) 그리고 PtNP/MWNT (7.5%) 상대전극을 사용한 염료감응형 태양전지의 효율과 비교하였을 때, 가장 높은 효율을 보여주고 있다.
In this study, we present an excellent approach for easily and uniformly immobilizing Pt, Au and bimetallic PtAu nanoparticles (NPs) on a multi-walled carbon nanotube (MWNT)-coated layer through dry plasma reduction. The NPs are stably and uniformly immobilized on the surface of MWNTs and the nanohybrid materials are applied to counter electrode (CE) of dye-sensitized solar cells (DSCs). The electrochemical properties of CEs are examined through cyclic voltammogram, electrochemical impedance spectroscopy, and Tafel measurements. As a result, both electrochemical catalytic activity and electrical conductivity are highest for PtAu/MWNT electrode. The DSC employing PtAu/MWNT CE exhibits power conversion efficiency of 7.9%. The efficiency is better than those of devices with MWNT (2.6%), AuNP/MWNT (2.7%) and PtNP/MWNT (7.5%) CEs.
[References]
  1. O’Regan B, Gratzel M, Nature, 353, 737, 1991
  2. Gratzel M, Inorg. Chem., 44(20), 6841, 2005
  3. Jiang KJ, Manseki K, Yu YH, Masaki N, Suzuki K, Song YL, Yanagida S, Adv. Funct. Mater., 19(15), 2481, 2009
  4. Chang JA, Rhee JH, Im SH, Lee YH, Kim HJ, Seok SI, Nano Lett., 10(7), 2609, 2010
  5. Sastrawan R, Beier J, Belledin U, Hemming S, Hinsch A, Kern R, Vetter C, Petrat FM, Prodi-Schwab A, Lechner P, Hoffmann W, Sol. Energy Mater. Sol. Cells, 90(11), 1680, 2006
  6. Ahn SH, Kim HW, Lee SH, Chi WS, Choi JR, Shul YG, Kim JH, Korean J. Chem. Eng., 28(1), 138, 2011
  7. Kay A, Gratzel M, Sol. Energy Mater. Sol. Cells, 44(1), 99, 1996
  8. Olsen E, Hagen G, Lindquist SE, Sol. Energy Mater. Sol. Cells, 63(3), 267, 2000
  9. Lee SU, Choi WS, Hong B, Sol. Energy Mater. Sol. Cells, 94(4), 680, 2010
  10. Nam JG, Park YJ, Kim BS, Lee JS, Scr. Mater., 62(3), 148, 2010
  11. Kim KM, Kang KY, Choi MG, Lee YG, Korean Chem. Eng. Res., 49(6), 846, 2011
  12. Bonard J, Maier F, Stockli T, Chatelain A, Heer WA, Salvetat J, Forro L, Ultramicroscopy, 73(1), 7, 1998
  13. Trancik JE, Barton SC, Hone J, Nano Lett., 8(4), 982, 2008
  14. Lee WJ, Lee DY, Kim IS, Jeong SJ, Song JS, Trans. Electr Electron. Mater., 6(4), 140, 2005
  15. Cha SI, Koo BK, Seo SH, Lee DY, J. Mater. Chem., 20(4), 659, 2010
  16. Dao VD, Tran CQ, Ko SH, Choi HS, J. Mater. Chem. A, 1(14), 4436, 2013
  17. Dao VD, Nang LV, Kim ET, Lee JK, Choi HS, ChemSusChem., 6(8), 1316, 2013
  18. Dao VD, Choi HS, Chem. Commun., 49(79), 8910, 2013
  19. Dao VD, Choi Y, Yong K, Larina LL, Shevaleevskiy O, Choi HS, J. Power Sources, 274(15), 831, 2014
  20. Dao VD, Larina LL, Suh H, Hong K, Lee JK, Choi HS, Carbon, 77, 980, 2014
  21. Baba K, Kaneko T, Hatakeyama R, Motomiyac K, Tohji K, Chem. Commun., 46(2), 255, 2010
  22. Lordi V, Yao N, Wei J, Chem. Mater., 13(3), 733, 2001
  23. Dao VD, Ko SH, Choi HS, Lee JK, J. Mater. Chem., 22(28), 14023, 2012
  24. Fennell J, He DS, Tanyi AM, Logsdail AJ, Johnston RL, Li ZY, Horswell SL, J. Am. Chem. Soc., 135(17), 6554, 2013
  25. Chen CW, Serizawa T, Akashi M, Chem. Mater., 14(5), 2232, 2002
  26. Shen J, Hill JM, Ramachandra MW, Podkolzin SG, Dumesic JA, Catal. Lett., 60(1), 1, 1999
  27. Wolf A, Schuth F, Appl. Catal. A: Gen., 226(1), 1, 2002
  28. Yang CM, Kalwei M, Schuth F, Chao KJ, Appl. Catal. A: Gen., 254(2), 289, 2003
  29. Boujday S, Lehman J, Lambert JF, Che M, Catal. Lett., 88(1), 23, 2003
  30. Shelimov B, Lambert JF, Che M, Didillon B, J. Am. Chem. Soc., 121(3), 545, 1999
  31. Ranasinghe, A. D. (Ph.D. thesis), University of California, Santa Barbara, CA, (2007).
  32. Brillson LJ, “Surface and Interface of Electronic Materials”, WILEY-VCH Verlag 413 GmbH & Co. KGaA, Weinheim (2010).
  33. Xu CX, Hou JG, Pang XH, Li XJ, Zhu ML, Tang BY, Int. J. Hydrog. Energy, 37(14), 10489, 2012
  34. Toda T, Igarashi H, Watanabe M, J. Electroanal. Chem., 460(1), 258, 1999
  35. Yoon CH, Vittal R, Lee J, Chae WS, Kim KJ, Electrochim. Acta, 53(6), 2890, 2008
  36. Dao VD, Choi HS, Electrochim. Acta, 93, 287, 2013
  37. Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J, Murata K, Sol. Energy Mater. Sol. Cells, 79(4), 459, 2003