Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.2, 229-233, 2016
식물세포배양으로부터 파클리탁셀 회수를 위한 초음파를 이용한 액-액 추출
Ultrasound-Assisted Liquid-Liquid Extraction for Recovery of Paclitaxel from Plant Cell Cultures
본 연구에서는 식물세포배양액으로부터 파클리탁셀을 효율적으로 회수하기 위하여 초음파를 이용한 액-액 추출 공정을 개발하였다. 액-액 추출을 위한 최적의 초음파 파워와 조업 시간은 주어진 하층(메틸렌 클로라이드 층)/상층(메탄올 농축액 층) 비(25%, v/v)에서 각각 250W와 15 min임을 알 수 있었다. 최적 조건 하에서 초음파를 이용한 액-액 추출 공정의 경우 단 1 회 추출로 대부분의 파클리탁셀을 하층(메틸렌 클로라이드 층)으로부터 회수(~92%) 가능하였다. 또한 무기염 첨가에 의한 초음파 상승효과로 인하여 액-액 추출을 위하여 적절한 무기염 농도와 초음파 파워가 요구됨을 알 수 있었다.
In this study, an efficient ultrasound-assisted liquid-liquid extraction process was developed for recovering of paclitaxel from plant cell cultures. The optimal ultrasonic power and operating time were 250 W and 15 min at fixed ratio of bottom phase, methylene chloride to top phase, MeOH (25%, v/v). Under the optimal conditions developed in the present method, most of the paclitaxel (~92%) was recovered from crude extract by a single extraction step. Due to the synergistic effect of ultrasound by the addition of inorganic salt, an appropriate inorganic salt concentration and the ultrasonic power were found to be required for the effective recovery of paclitaxel using ultrasound-assisted liquid-liquid extraction.
[References]
  1. Kim JH, Korean J. Biotechnol. Bioeng., 21, 1, 2006
  2. Kim GJ, Kim JH, Process Biochem., 50, 989, 2015
  3. Hsiao JR, Leu SF, Huang BM, J. Oral Pathol. Med., 38, 188, 2009
  4. Rao K, Hanuman J, Alvarez C, Stoy M, Juchum J, Davies R, Baxley R, Pharm. Res., 12, 1003, 1995
  5. Choi HK, Son JS, Na GH, Hong SS, Park YS, Song JY, J. Plant Biotechnol., 29, 59, 2002
  6. Baloglu E, Kingston DGI, J. Nat. Prod., 62, 1068, 1999
  7. Lee CG, Kim JH, Korean Chem. Eng. Res., 52(4), 497, 2014
  8. Kim JH, Lim CB, Kang IS, Hong SS, Lee HS, Korean J. Biotechnol. Bioeng., 15, 337, 2000
  9. Kim GJ, Kim JH, Korean J. Chem. Eng., 32(6), 1023, 2015
  10. Pyo SH, Song BK, Ju CH, Han BH, Choi HJ, Process Biochem., 40, 1113, 2005
  11. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Process Biochem., 37, 679, 2002
  12. Kim JH, Hong SS, Korean J. Biotechnol. Bioeng., 15, 346, 2000
  13. Hyun JE, Kim JH, Korean J. Biotechnol. Bioeng., 23, 281, 2008
  14. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39, 1985, 2004
  15. Kim JH, KSBB J., 24, 212, 2009
  16. Pachaiyappan A, Varathan S, Venugopal R, Ultrason. Sonochem., 23, 156, 2015
  17. Guo YX, Han J, Zhang DY, Wang LH, Zhou LL, Ultrason. Sonochem., 19, 719, 2012
  18. Reza R, Rouhollah H, Ahmad L, Anal. Methods, 7, 3253, 2015
  19. Ming G, Huili W, Meiping M, Yuna Z, Xiaohan Y, Randy D, Dongli D, Xuedong W, Food Chem., 175, 181, 2015
  20. Choi HK, Adams TL, Stahlhut RW, Kim SI, Yun JH, Song BK, Kim JH, Song JS, Hong SS, Lee HS, “Method for Mass Production of Taxol by Semi-continuous Culture with Taxus chinensis Cell Culture,” US. Patent No. 5,871,979(1999).
  21. Findik S, Gunduz G, Ultrason. Sonochem., 14, 157, 2007
  22. Mukesh G, Hu H, Arun SM, Madhumita BR, Water Res., 38, 4247, 2004
  23. Jagannathan TK, Nagarajan R, Ramamurthi K, Chem. Eng. Process., 50(3), 305, 2011
  24. Ha GS, Kim JH, Korean Chem. Eng. Res., In press, 2015
  25. Eiji I, Masako N, Nobuyuki K, Kenji K, Sep. Purif. Technol., 144, 177, 2015
  26. Ozuna C, Puig A, Garcia-Perez JV, Mulet A, Carcel JA, J. Food Eng., 119(1), 84, 2013