Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.2, 157-162, 2016
전착법을 이용한 슈퍼커패시터용 다공성 Co(OH)2 나노플레이크 박막의 제조 및 전기화학적 특성
Electrochemical Properties of Porous Co(OH)2 Nano-flake Thin Film Prepared by Electro-deposition for Supercapacitor
다공성 Co(OH)2 나노플레이크 박막은 전위제어 전착법을 이용하여 티타늄 메쉬에 여러 전착전위(-0.75, -1.0, -1.2 및 -1.4 V)에서 전착하여 슈퍼커패시터에 이용하였다. 티타늄 메쉬에 전착된 Co(OH)2 나노플레이크 박막의 두께 및 전착량은 전착전위의 제어에 의해 결정되었고 -1.4 V에서 전착한 Co(OH)2 나노플레이크 박막의 두께는 약 34 μm로 가장 두껍게 전착되었으며 전착량은 17.2 g이다. 전착전위 -0.75, -1.0, -1.2 및 -1.4 V에서 전착한 경우 초기 방전용량은 각각 226, 370, 720 그리고 1,008 mF cm-2으로 나타났고 1,000 사이클 후 각각 206, 349, 586 그리고 866 mF cm-2으로 나타났다. 또한 이들의 용량유지율은 각각 91, 94, 81 및 86%로 나타났다.
Porous Co(OH)2 nano-flake thin films were prepared by a potential-controlled electro-deposition technique at various deposition voltage (-0.75, -1.0, -1.2, and -1.4 V) on Ti-mesh substrates for supercapacitor application. The potential of electrode was controlled to regulate the film thickness and the amount of Co(OH)2 nano-flake on the titanium substrate. The film thickness was shown to reach the maximum value of 34 μm at -1.4 V of electrode potential, where 17.2 g of Co(OH)2 was deposited on the substrate. The specific discharge capacitances were measured to be 226, 370, 720, and 1008 mF cm-2 in the 1st cycle corresponding to the films which were formed at -0.75, -1.0, -1.2, and -1.4 V of electrode potentials, respectively. Then the discharge capacities were decreased to be 206, 349, 586 and 866 mF/cm2, where the persistency rates were 91, 94, 81, and 86%, respectively.
[References]
  1. Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F, Adv. Funct. Mater., 22(12), 2632, 2012
  2. Miller JR, Burke AF, Electrochem. Soc. Interface, 17(1), 53, 2008
  3. Simon P, Gogotsi Y, Nat. Mater., 7(11), 845, 2008
  4. Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P, J. Am. Chem. Soc., 130(9), 2730, 2008
  5. Venugopal N, Kim WS, Korean J. Chem. Eng., 32(9), 1918, 2015
  6. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366, 2005
  7. Wang G, Zhang L, Zhang J, Chem. Soc. Rev., 41, 797, 2012
  8. Choi BG, Huh YS, Hong WH, Korean Chem. Eng. Res., 50(4), 754, 2012
  9. Shinde NM, Jagadale AD, Kumbhar VS, Rana TR, Kim JH, Lokhande CD, Korean J. Chem. Eng., 32(5), 974, 2015
  10. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M, J. Power Sources, 101(1), 109, 2001
  11. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A., Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS, Science, 24, 1537, 2011
  12. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F, J. Power Sources, 153(2), 413, 2006
  13. Jeong H, Jeong SM, Korean Chem. Eng. Res., 53(2), 131, 2015
  14. Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F, Adv. Funct. Mater., 22(12), 2632, 2012
  15. Nagarajan N, Humadi H, Zhitomirsky I, Electrochim. Acta, 51(15), 3039, 2006
  16. Chen Z, Augustyn V, Wen J, Zhang YW, Shen MQ, Dunn B, Lu YF, Adv. Mater., 23(6), 791, 2011
  17. Xia XH, Tu JP, Mai YJ, Wang XL, Gu CD, Zhao XB, J. Mater. Chem., 21, 9319, 2011
  18. Jeong MG, Zhuo K, Cherevko S, Chung CH, Korean J. Chem. Eng., 29(12), 1802, 2012
  19. Hu CC, Wang CW, Chang KH, Chen MG, Nanotechnology, 26(27), 274004, 2015
  20. Jayashree RS, Kamath PV, J. Mater. Chem., 9(4), 961, 1999
  21. Ramesh TN, Rajamathi M, Kamath PV, Solid State Sci., 5(5), 751, 2003
  22. Wang R, Yan X, Lang J, Zheng Z, Zhang P, J. Mater. Chem. A, 2, 12724, 2014
  23. Zhao CM, Wang X, Wang SM, Wang YY, Zhao YX, Zheng WT, Int. J. Hydrog. Energy, 37(16), 11846, 2012
  24. He YS, Bai DW, Yang X, Chen J, Liao XZ, Ma ZF, Electrochem. Commun., 12(4), 570, 2010
  25. Luo HM, Zhang FB, Zhao X, Zhang DY, Sun YX, Yang P, J. Mater. Sci. -Mater. Electron., 24(7), 2473, 2013
  26. Zhao T, Jiang H, Ma J, J. Power Sources, 196(2), 860, 2011
  27. Gupta V, Kusahara T, Toyama H, Gupta S, Miura N, Electrochem. Commun., 9(9), 2315, 2007
  28. Chang JK, Wu CM, Sun IW, J. Mater. Chem., 20, 3729, 2010
  29. Peng C, Jin J, Chen GZ, Electrochim. Acta, 53(2), 525, 2007
  30. Cao L, Xu F, Liang YY, Li HL, Adv. Mater., 16(20), 1853, 2004
  31. Kong LB, Lang JW, Liu M, Luo YC, Kang L, J. Power Sources, 194(2), 1194, 2009
  32. Tao F, Shen Y, Liang Y, Li H, J. Solid State Electrochem., 11, 853, 2007