Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.1, 135-139, 2016
식물세포배양으로부터 파클리탁셀 회수를 위한 무기염이 첨가된 액-액 추출
Liquid-Liquid Extraction for Recovery of Paclitaxel from Plant Cell Cultures by Adding Inorganic Salts
본 연구에서는 무기염을 첨가한 액-액 추출에 의해 식물세포인 바이오매스로부터 파클리탁셀 회수 방법을 획기적으로 개선하고자 하였다. 다양한 무기염(NaCl, KCl, K2HPO4, NaH2PO4, NaH2PO4·2H2O)을 이용하여 추출효율을 조사한 결과, NaCl에서 가장 낮은 분배계수(0.053)로 가장 높은 파클리탁셀 수율(~96%)을 얻을 수 있었다. NaCl을 이용한 액-액 추출에서 최적의 NaCl/용매 비와 메틸렌 클로라이드/메탄올 비는 각각 1%(w/v)와 26%(v/v)이었다. 또한 최적의 NaCl/용매 비와 메틸렌 클로라이드/메탄올 비에서 파클리탁셀 함량에 따른 영향을 조사한 결과, 순수 파클리탁셀 함량 0.066% (w/v)에서 가장 낮은 분배계수(0.053)로 가장 높은 수율(~96%)을 얻을 수 있었다. 기존 액-액 추출의 경우 총 3회의 추출로 파클리탁셀을 95% 정도 회수 가능한 반면 무기염을 이용한 방법의 경우 단 1회 추출로 대부분의 파클리탁셀을 회수(~96%) 가능하였다.
We developed a liquid-liquid extraction method using an inorganic salt to dramatically improve the recovery efficiency of the anticancer agent paclitaxel from plant cell cultures. As a result of liquid-liquid extraction using a diverse types of inorganic salt (NaCl, KCl, K2HPO4, NaH2PO4, NaH2PO4·2H2O), NaCl gave the highest yield (~96%) and lowest partition coefficient (0.053) of paclitaxel. The optimal NaCl/solvent ratio, methylene chloride/MeOH ratio, and pure paclitaxel content for liquid-liquid extraction using NaCl were 1% (w/v), 26% (v/v), and 0.066% (w/v), respectively. Under the optimal conditions developed in the present method, most of the paclitaxel (~96%) was recovered from biomass by a single extraction step. In addition, this method facilitated 3-fold higher recovery efficiency of paclitaxel in a shorter extraction number than the conventional liquid-liquid extraction method.
[References]
  1. Kim JH, Biotechnol. Bioeng., 21, 1, 2006
  2. Kim GJ, Kim JH, Process Biochem., 50, 989, 2015
  3. Hsiao JR, Leu SF, Huang BM, J. Oral Pathol. Med., 38, 188, 2009
  4. Rao K, Hanuman J, Alvarez C, Stoy M, Juchum J, Davies R, Baxley R, Pharm. Res., 12, 1003, 1995
  5. Choi HK, Son JS, Na GH, Hong SS, Park YS, Song JY, J. Plant Biotechnol., 29, 59, 2002
  6. Baloglu E, Kingston DGI, J. Nat. Prod., 62, 1068, 1999
  7. Lee CG, Kim JH, Korean Chem. Eng. Res., 52(4), 497, 2014
  8. Kim JH, Lim CB, Kang IS, Hong SS, Lee HS, Biotechnol. Bioeng., 15, 337, 2000
  9. Kim GJ, Kim JH, Korean J. Chem. Eng., 32(6), 1023, 2015
  10. Pyo SH, Song BK, Ju CH, Han BH, Choi HJ, Process Biochem., 40, 1113, 2005
  11. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Process Biochem., 37, 679, 2002
  12. Kim JH, Hong SS, Biotechnol. Bioeng., 15, 346, 2000
  13. Hyun JE, Kim JH, Biotechnol. Bioeng., 23, 281, 2008
  14. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39, 1985, 2004
  15. Kim JH, KSBB J., 24, 212, 2009
  16. Wu JW, Chen HC, Ding WH, J. Chromatogr. A, 1302, 20, 2013
  17. Hsieh HK, Chen CL, Ding WH, Anal. Methods, 5, 7001, 2013
  18. Saien J, Asadabadi S, J. Taiwan Inst. Chem. Eng., 41, 295, 2010
  19. Gao M, Wang H, Ma M, Zhang Y, Yin X, Dahlgren RA, Du D, Wang X, Food Chem., 175, 181, 2015
  20. Choi HK, Adams TL, Stahlhut RW, Kim SI, Yun JH, Song BK, Kim JH, Song JS, Hong SS, Lee HS, “Method for Mass Production of Taxol by Semi-continuous - 49 - culture with Taxus chinensis Cell Culture,” US. Patent No. 5,871,979 (1999).
  21. Rezaeepour R, Heydari R, Ismaili A, Anal. Methods, 7, 3253, 2015
  22. Lee JY, Kim JH, Sep. Purif. Technol., 103, 8, 2013