Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.1, 101-107, 2016
연속흐름형 Jet loop reactor에서 CO2를 이용한 알칼리폐수의 중화
Neutralization of Alkaline Wastewater with CO2 in a Continuous Flow Jet Loop Reactor
본 연구에서는 CO2를 이용한 알칼리폐수의 중화처리 시 jet loop reactor의 적용가능성을 검토하고자 하였다. 이를 위해 연속식 jet loop reactor에서 pH=10.1인 알칼리 폐수의 유입유량(QL,in=0.9~6.6 L/min)과 유입가스유량(QG,in=1~6 L/min)을 변화시키면서 유출수의 pH 변화 및 CO2 제거특성을 살펴보았다. 중화반응 후 유출수의 pH는 QL,in/QG,in 비가 1.1일 때는QG,in 및 QL,in이 증가하여도 pH가 7.2 정도로 일정하게 유지되었다. 그러나 QL,in/QG,in 비가 1.1 이상에서는 QL,in/QG,in 비가 증가할수록 CO2 제거효율 및 배출수의 pH가 증가하는 경향을 보였다. 본 연구범위에서 얻어진 최대 CO2 제거효율은 98.06%로 QG,in=2 L/min, QL,in=4 L/min인 조건이었으며, 이때의 유출수 pH는 8.43 이었다.
This paper investigates the feasibility of applying the jet loop reactor for the neutralization of alkaline wastewater using carbon dioxide (CO2). In this study, pH changes and CO2 removal characteristics were examined by changing influent flow rate of alkaline wastewater (initial pH=10.1) and influent CO2 flow rates. Influent flow rates of alkaline wastewater (QL,in) ranged between 0.9 and 6.6 L/min, and inlet gas flow rate (QG,in) of 1 and 6 L/min in a lab-scale continuous flow jet loop reactor. The outlet pH of wastewater was maintained at 7.2 when the ratio (QL,in/QG,in) of QL,in and QG,in was 1.1. However, the CO2 removal efficiency and the outlet pH of wastewater were increased when QL,in/QG,in ratio was higher than 1.1. Throughout the experiments, the maximum CO2 removal efficiency and the outlet pH of wastewater were 98.06% and 8.43 at the condition when QG,in and QL,in were 2 L/min and 4 L/min, respectively.
[References]
  1. Ko KS, “A Study on Utilization of CO2-rich Exhaust Gas for pH Control of Alkaline Wastewater,” Ph. D. Dissertation, Sunchon National University, Sunchon, Korea(2010).
  2. Fleischer C, Becker S, Eigenberger G, Chem. Eng. Sci., 51(10), 1715, 1996
  3. Park SW, Sohn IJ, Park DW, Oh KJ, J. Sep. Sci. Technol., 38(6), 1361, 2003
  4. Mahamoudkhani M, Heidel KR, Ferreira JC, Keith DW, Cherry RS, Energy Procedia, 1(1), 1535, 2009
  5. Gaddis ES, Chem. Eng. Process., 38(4-6), 503, 1999
  6. Bohner K, Blenke H, Verfahrenstechnik, 6, 50, 1972
  7. Chriastel L, Fadavi A, Nova Biotechnoligica, 4(1), 89, 2006
  8. Son MK, Sung HJ, Lee JK, J. Korean Society of Combustion, 18(2), 17, 2013
  9. Cha GE, Sung HJ, Lim JH, Lee TY, Lee JK, Korean J. Chem. Eng., 31(4), 701, 2014
  10. Darmana D, Henket RLB, Deen NG, Kuipers JAM, Chem. Eng. Sci., 62(9), 2556, 2007