Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.1, 81-88, 2016
감귤 추출물로부터 D-리모넨 분리를 위한 유사 이동층 크로마토그래피(SMB) 전산모사
Simulation of D-limonene Separation from Mandarine Extract in Simulated Moving Bed (SMB)
리모넨은 오렌지 향이 있는 천연의 키랄 화합물로 주로 감귤껍질과 레몬껍질에 함유되어 있다. 4 oC로 냉장 보관한 감귤 껍질을 에탄올을 용매로 속슬렛 추출기에서 2시간동안 120 oC에서 추출하였다. 역상 HPLC 분석을 통해 d-리모넨과 불순물의 헨리 상수를 계산하여 HLim=8.55, Himp=0.223를 얻었다. Aspen chromatography 프로그램을 사용해서 0.46×25 cm 칼럼으로 이루어진 4-bed SMB의 리모넨 전산모사를 수행하였고 삼각도내의 m2, m3 값을 변경하면서 순도가 가장 높은 분리 조건을 찾았다. 그 결과 가장 높은 순도는 98.59%이고, m2=2.57, m3=9.55였다. 이 때의 feed 유량은 1 mL/min, desorbent 유량은 1.19 mL/min, extract 유량은 0.857 mL/min, raffinate 유량은 1.34 mL/min이었다. Scale-up 전산모사를 위해 칼럼의 직경을 1.6 cm로 늘린 4-bed SMB에서 직경이 0.46 cm인 4-bed SMB와 같은 결과를 갖는 조건을 찾기 위해 유량을 칼럼 부피 비에 정비례하여 증가시켰다. 이 때 feed, desorbent, extract, raffinate의 유량은 각각 12 mL/min, 14 mL/min, 10 mL/min, 16 mL/min이었다. 리모넨과 불순물의 등온흡착곡선을 선형으로 가정하였기에 칼럼 부피에 정비례하여 유량을 증가시키는 scale-up이 가능하였다.
Limonene is orange flavored natural material that is mainly contained in mandarine and lemon peels. Dlimonene was extracted from cold-storaged mandarine peel by using Soxhlet extractor at 120 oC for 2 hours with ethanol as solvent. Henry constants of d-limonene and impurity were calculated as HLim=8.55 and Himp=0.223 from the result of HPLC analysis. 4-bed SMB of limonene simulation with 0.46×25 cm columns was conducted by using Aspen chromatography program. Then effective condition for purity was found by changing m2 and m3 values in triangle diagram. The highest purity was 98.59% at m2=2.57, m2=9.55. For this case, feed, desorbent, extract, and raffinate flow rates were 1 mL/min, 1.19 mL/min, 0.857 mL/min and 1.34 mL/min, respectively. Scale-up simulation was also conducted by increasing column diameter from 0.46 cm to 1.6 cm for getting the same efficiency. The increased flow rates were 12 mL/min, 14 mL/min, 10 mL/min, and 16 mL/min for feed, desorbent, extract, and raffinate. It was possible to scale-up with maintaining same limonene purity because linear isotherms of limonene and impurity were assumed.
[References]
  1. http://apps.fas.usda.gov/psdonline/circulars/citrus.pdf.
  2. Im HS, Yoon CH, Oh EH, J. Korean Oil Chemist’s Soc., 26(3), 350, 2009
  3. Morse MA, Toburen AL, Cancer Letters, 104(2), 211, 1996
  4. Lu HY, Shen Y, Sun X, Zhu H, Liu XJ, J. Science of Food and Agriculture, 93(12), 2917, 2013
  5. Langer RS, Wise DL, “Medical Applications of Controlled Release,” CRC Press, Florida, U.S.A., 2, 2(2004).
  6. Rosen HB, Chang J, Wnek GE, Linhardt RJ, Langer R, Biomaterials, 4, 131, 1983
  7. Heuer C, Hugo P, Mann G, Seidel-Morgenstern A, J. Chromatogr. A, 752, 19, 1996
  8. Storti G, Mazzotti M, Morbidelli M, Carra S, AIChE J., 39, 471, 1993
  9. Juza M, J. Chromatogr. A, 865, 35, 1999
  10. Won JH, Cho YS, Kim YD, Ahn DJ, Korean Chem. Eng. Res., 39(6), 685, 2001
  11. Migliorini C, Mazzotti M, Morbidelli M, J. Chromatogr. A, 827, 161, 1998
  12. Pedeferri M, Zenoni G, Mazzotti M, Morbidelli M, Chem. Eng. Sci., 54(17), 3735, 1999
  13. Song SM, Kim IH, Korean Chem. Eng. Res., 49(6), 798, 2011
  14. Guiochon G, Golshan-Shirazi S, Katti A, “Fundamentals of Preparative and Nonlinear Chromatography,” Academic Press, Massachusetts, U.S.A.(1994).
  15. Pais LS, Loureiro JM, Rodrigues AE, Chem. Eng. Sci., 52(2), 245, 1997
  16. Lee SH, Lee E, Kim IH, Biotechnol. Bioeng., 23(2), 135, 2008
  17. Lee IS, Lee IS, Kim IH, Biotechnol. Bioeng., 29(4), 250, 2014