Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.54, No.1, 64-69, 2016
바이오디젤 생산을 위한 K2CO3/γ-Al2O3 고체염기촉매의 개발
Development of Solid Base Catalyst K2CO3/γ-Al2O3 for the Production of Biodiesel
바이오디젤 공정에서 비균일상 촉매는 생성물의 회수를 쉽게 하며 촉매를 재사용하는 장점이 있기 때문에 최근 연구가 활발히 진행되고 있다. 본 연구에서는 K2CO3/γ-Al2O3 촉매를 이용한 바이오디젤 생성 반응에서 촉매의 소성온도가 반응활성에 미치는 영향을 살펴보았다. 소성온도가 600 oC까지 높아짐에 따라 촉매의 활성이 높아졌으며, 그 이상의 온도에서는 촉매의 활성이 급격히 감소하여 소성온도가 촉매의 활성에 매우 중요한 영향을 주는 것을 확인하였다. 고온에서 이와 같은 활성감소는 Al-O-K와 Al-O2-K인 활성자리의 감소가 원인이었던 것으로 추정되었다.
The applications of heterogeneous catalyst have been relatively active area of research in the biodiesel process. These catalysts have the benefit of easy recovery and reusability of the catalyst. The objective of this study is to find out significant effect of calcination temperature on K2CO3/γ-Al2O3 catalytic activity in the biodiesel formation reaction. As a results, the temperature at which a catalyst was calcined had very important influence on the catalytic activity. The catalytic activity increased up to 600?, but it severely decreased above the temperature. The reduction of catalyst activity at high temperature would be due to the deduction of the active sites of Al-O-K and Al-O2-K.
[References]
  1. Talebian-Kiakalaieh A, Amin NAS, Mazaheri H, Appl. Energy, 104, 683, 2013
  2. Jinlin X, Tony EG, Alan CH, Renew. Sust. Energ. Rev., 15, 1098, 2011
  3. Jeong DS, Nam BU, Jeong YJ, Appl. Chem., 13(1), 157, 2009
  4. Choi JH, Park YB, Lee SH, Cheon JK, Woo HC, Korean Chem. Eng. Res., 48(5), 583, 2010
  5. Lee JS, Park SC, Korean Chem. Eng. Res., 48(1), 10, 2010
  6. Buasri A, Ksapabutr B, Panapoy M, Chaiyut N, Korean J. Chem. Eng., 29(12), 1708, 2012
  7. Semwal S, Arora AK, Badoni RP, Tuli DK, Bioresour. Technol., 102(3), 2151, 2011
  8. Jantzen CM, Brown KG, Pickett JB, Int. J. Appl. Glass Sci., 1, 1, 2010
  9. Sanchez M, Navas M, Ruggera JF, Casella ML, Aracil J, Martinez M, Energy, 73, 661, 2014
  10. Sun CJ, Qiu FX, Yang DY, Ye B, Fuel Process. Technol., 126, 383, 2014
  11. Vyas AP, Subrahmanyam N, Patel PA, Fuel, 88(4), 625, 2009
  12. Boz N, Kara M, Chem. Eng. Commun., 196(1), 80, 2009
  13. Xie WL, Li HT, J. Mol. Catal. A-Chem., 255(1-2), 1, 2006
  14. Matsuhashi H, Oikawa M, Arata K, Langmuir, 16(21), 8201, 2000
  15. Yamaguchi T, Wang Y, Komatsu M, Ookawa M, Catal. Surv. Jpn., 5, 81, 2002
  16. Yi H, Chena YH, Huang RH, Lin NC, Shang CY, Chang CC, Chang PC, Chiang CYH, J. Taiwan Inst. Chem. Eng., 42(16), 937, 2011
  17. Park S, Song HJ, Lee MG, Park J, Korean J. Chem. Eng., 31(1), 125, 2014
  18. Lapis AAM, Oliveira LF, Neto BAD, Dupont J, Chem. Sus. Chem., 1, 759, 2008
  19. Lee JT, Kim EY, Korean J. Biotechnol. Bioeng, 23(6), 509, 2008
  20. Lee KH, Ha BH, Korean Chem. Eng. Res., 34(1), 28, 1996
  21. Lukic I, Krstic J, Jovanovic D, Skala D, Bioresour. Technol., 100(20), 4690, 2009
  22. Liu H, Su LY, Liu FF, Li C, Solomon UU, Appl. Catal. B: Environ., 106(3-4), 550, 2011
  23. Wang Y, Zhu JH, Huang WY, Phys. Chem. Chem. Phys., 3, 2537, 2001
  24. Schuchardt U, Sercheli R, Vargas RM, J. Braz. Chem. Soc., 9, 199, 1998
  25. Alonso DM, Mariscal R, Moreno-Tost R, Poves MDZ, Granados ML, Catal. Commun., 8, 2074, 2007
  26. Di Cosimo JI, Diez VK, Xu M, Iglesia E, Apesteguia CR, J. Catal., 178(2), 499, 1998
  27. Teng G, Gao L, Xiao G, Liu H, Lv J, Appl. Biochem. Biotechnol., 10, 8953, 2010