Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.6, 802-807, 2015
새로운 가교제를 적용한 촉매를 이용한 글루코스 센서의 성능향상 연구
A Study on Performance Improvement of Glucose Sensor Adopting a Catalyst Using New Cross Liker
본 논문에서는 글루코스산화제, polyethyleneimine(PEI) 및 탄소나노튜브 간 물리적 흡착으로 제조된 촉매(GOx/PEI/CNT)에 새로운 가교제인 terephthalaldehyde(TPA)를 첨가하여 민감도 및 안정성이 개선된 글루코스 센서 촉매를 합성하여, 감지능 및 안정성 개선효과를 확인하였다. 새로운 가교제를 포함한 바이오 촉매는, 글루코스산화제 및 polyethyeleneimine의 관능기와 TPA의 관능기간 알돌축합반응에 의해 생성되었고, 이를 통해 생성된 새로운 전자전달구조는 글루코스의 산화반응을 촉진시켰다. 이러한 촉매활성은 전기화학적 평가를 통해 정량적으로 평가하였으며 그 결과 41.1 μAcm-2mM-1의 글루코스 민감도를 얻을 수 있었다. 또한 가교제와 글루코스산화제 및 polyethyeleneimine간의 화학반응의 형성에 의해 글루코스 산화제의 외부 손실을 최소화 하여, 센서 안정성 향상에도 크게 기여하였다. 안정성 평가를 한 결과, 3주간의 주기적인 촉매 활성 측정후에 94.6% 활성이 유지됨을 확인하였다.
In this study, we synthesized a new biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of terephthalaldehyde (TPA) (TPA/GOx/PEI/CNT) for fabrication of glucose sensor that shows improved sensing ability and stability compared with that using other biocatalysts. Main bonding of the new TPA/GOx/PEI/CNT catalyst is formed by Aldol condensation reaction of functional end groups between GOx/PEI and TPA. Such formed bonding structure promotes oxidation reaction of glucose. Catalytic activity of TPA/GOx/PEI/CNT is evaluated quantitatively by electrochemical measurements. As a result of that, large sensitivity value of 41 μAcm-2mM-1 is gained. Regarding biosensor stability of TPA/GOx/PEI/CNT catalyst, covalent bonding formed between GOx/PEI and TPA prevents GOx molecules from becoming leaching-out and contributes improvement in biosensor stability. With estimation of the biosensor stability, it is found that the TPA/GOx/PEI/CNT catalyst keeps 94.6% of its initial activity even after three weeks.
[References]
  1. International Diabetes Federation, “Diabetes Atlas. 2nd ed.,” International Diabetes Federation, 17-71(2003).
  2. Yun KE, Park MJ, Park HS, Int. J. Clin. Pract., 61(1), 39, 2007
  3. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L, Biotechnol. Adv., 27, 489, 2009
  4. Rad AS, Ardjmand M, Jahanshahi M, Safekordi AA, Korean J. Chem. Eng., 29(8), 1063, 2012
  5. Park HG, Hwang U, Kim IH, Korean Chem. Eng. Res., 39, 512, 2001
  6. Kim H, Jeong NJ, Lee SJ, Song KS, Korean J. Chem. Eng., 25(3), 443, 2008
  7. Yu HR, Kim JG, Im JS, Bae TS, Lee YS, J. Ind. Eng. Chem., 18(2), 674, 2012
  8. Sheldon RA, Appl. Microbiol. Biotechnol., 92(3), 467, 2011
  9. Chung Y, Hyun KH, Kwon Y, “Fabrication of Biofuel Cell Improved by π-conjugated Electron Pathway Effect Induced from a new Enzyme Catalyst Employing Terephtalal Dehyde,” Nanoscale. Accepted.
  10. Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources, 286, 197, 2015
  11. Ramanavicius A, Kausaite A, Ramanaviciene A, Biosens. Bioelectron., 20, 1962, 2005
  12. Kaczmarczyk B, J. Mol. Struct., 1048, 179, 2013
  13. Kurihara T, Oba N, Mori Y, Tomaru S, Kaino T, J. Appl. Phys., 70, 17, 1991
  14. Dobrikov G, Vacuum, 76, 227, 2004
  15. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I, Science, 299, 1877, 2003
  16. Zhang S, Wang N, Yu H, Niu Y, Sun C, Bioelectrochemistry, 67, 15, 2005
  17. Yan XB, Chenn XJ, Tay BK, Khor KA, Electrochem. Commun., 9, 1269, 2007
  18. Liu Q, Lu XB, Li J, Yao X, Li JH, Biosens. Bioelectron., 22, 3203, 2007
  19. Hyun K, Han SW, Koh WG, Kwon Y, Int. J. Hydrog. Energy, 40(5), 2199, 2015
  20. Cai C, Chen J, Anal. Biochem., 332, 75, 2004
  21. Bahulekar R, Ayyangar NR, Ponrathnam S, Enzyme Microb. Technol., 13, 858, 1991
  22. Xiong MP, Biomaterials, 28, 4889, 2007