Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.6, 798-801, 2015
저비율의 안정제를 이용한 CdTe 나노선 합성
The Synthesis of CdTe Nanowires Based on Stabilizers with Low Concentrations
Cadmium telluride(CdTe) 나노입자의 자기조립으로 형성된 나노구조체는 독특한 특성 때문에 여러 분야에서 활발히 연구되고 있다. 나노구조체의 광학적, 물리적 특성은 물질 형태에 크게 의존하기 때문에 나노구조를 제어하는 기술은 나노과학 분야에서 가장 핵심적인 요체이다. 이번 실험에서 각 나노입자의 자기조립을 통해 나노선이 제조됨을 확인하였다. 안정제로 사용된 thioglycolic acid(TGA)와 Cd 이온의 비율을 기존의 2.4:1에서 1.3:1로 낮추어 CdTe 나노선을 합성 하였다. 자기조립을 통해 생성된 나노입자는 곧고 긴 형태였으며 다결정을 이루고 있었다. 이렇게 합성된 나노선은 투과전자현미경(TEM)과 주사전자현미경(SEM)으로 관찰하였으며, 작게는 500 nm에서 크게는 10 μm 이상의 곧고 긴 나노선이 합성된 것을 확인할 수 있었다.
Nanomaterials (NMs) based on cadmium telluride (CdTe) are the theme of numerous research areas due to their unique chemical and physical properties. NM synthesis via a size-controlled procedure has become an intriguing research topic because NMs exhibit novel optical and physical properties depending on their size and shape. In this study, we prepared CdTe nanowires (NWs) via self-assembly from individual Nanoparticles (NPs). Thioglycolic acid (TGA)-to-Cd ion ratio of 1.3 was used instead of the traditional value of 2.4 and the reduced amount of stabilizer resulted in reorganization from individual NPs into NWs consisting of multi-layers of individual NPs. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were performed to characterize NWs. The produced nanowires were straight and long in shape and their length ranged from 500 nm to tens of micrometers.
[References]
  1. Alivisatos AP, J. Phys. Chem., 100(31), 13226, 1996
  2. Li P, Wang L, Wang L, Li Y, Chem.-Eur. J., 14, 5951, 2008
  3. Nguyen DT, Kim KS, Korean J. Chem. Eng., 31(8), 1289, 2014
  4. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H, J. Phys. Chem. B, 106(29), 7177, 2002
  5. Li CL, Murase N, Chem. Lett., 34(1), 92, 2005
  6. Meulenkamp EA, J. Phys. Chem. B, 102(29), 5566, 1998
  7. Zhihong J, Jun W, Fen L, Lihua T, Yucai F, Qian L, J. Nanoeng. Nanomanuf., 2, 133, 2012
  8. Hines MA, Gnyotsionnest P, J. Phys. Chem., 100(2), 468, 1996
  9. Duan XF, Lieber CM, J. Am. Chem. Soc., 122(1), 188, 2000
  10. Sigman Michael B, Korgel Brian A, Chem. Mater., 17, 1655, 2005
  11. Kim SK, Moon SK, Oh SG, Korean Chem. Eng. Res., 42(6), 727, 2004
  12. Nagaveni K, Hegde MS, Ravishankar N, Subbanna GN, Madrao G, Langmuir, 20(7), 2900, 2004
  13. Shugang W, Yaoxian L, Jie B, Qingbiao Y, Yan S, Chaoqun Z, Bull. Mat. Sci., 32, 487, 2009
  14. Liang HW, Liu S, Wu QS, Yu SH, Inorg. Chem., 48(11), 4927, 2009
  15. Batzner DL, Romeo A, Terheggen M, Dobeli M, Zogg H, Tiwari AN, Thin Solid Films, 451-452, 536, 2004
  16. Alnajjar A, Jawad SA, Yusuf N, Renew. Energy, 27(3), 417, 2002
  17. Mark G, Hannah H, Claire B, Rahman, Alex EP, Fred F, Peter D, Tony N, J. Mater. Chem., 17, 1989, 2007
  18. Yang KX, Yong D, Rusen Y, Lin WZ, Science, 303, 1348, 2004
  19. Xian GP, Yong D, Wenjie M, Hughes William L, Changshi L, Lin WZ, Science, 309, 1700, 2005