Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.6, 776-782, 2015
TiO2-SnO2 나노입자로 부터 고굴절 하드코팅 도막의 제조
Preparation of Hard Coating Films with High Refractive Index from TiO2-SnO2 Nanoparticles
TiO2 나노입자의 광촉매 반응을 억제하기 위해 평균 직경 3~5 nm의 TiO2-SnO2 나노입자가 titanium tetraisopropoxide (TTIP)와 tin chloride의 가수분해 반응에 의해 합성되었다. 생성된 TiO2-SnO2 나노입자를 졸-겔법에 의해 3-glycidoxypropyl trimethoxysilane(GPTMS)과 반응시킴에 의해 유-무기 혼성 코팅 용액이 제조되었다. 그 후 코팅 용액을 기재인 polycarbonate(PC) 시트 위에 스핀 코팅시키고, 120 oC에서 열경화 시켜 고굴절률 하드코팅 도막이 제조되었다. TiO2-SnO2 나노입자로부터의 코팅 도막은 TiO2 나노입자로부터 얻어진 코팅 도막의 2H에 비해 증가된 3H의 연필경도를 보였다. 또한 TiO2-SnO2 나노입자로부터의 코팅 도막의 굴절률은 Sn/Ti 몰 비가 0에서 0.5로 증가함에 따라 633 nm 파장에서 1.543으로부터 1.623으로 향상되었다.
TiO2-SnO2 nanoparticles with an average diameter of 3~5 nm were synthesized by hydrolysis of titanium tetraisopropoxide (TTIP) and tin chloride to depress the photocatalytic activity of TiO2 nanoparticles. Organic-inorganic hybrid coating solutions were prepared by reacting the TiO2-SnO2 nanoparticles with 3-glycidoxypropyl trimethoxysilane (GPTMS) by the sol-gel method. The hard coating films with high refractive index were obtained by curing thermally at 120 oC after spin-coating the coating solutions on the polycarbonate (PC) sheets. The coating films from TiO2-SnO2 nanoparticles showed an improved pencil hardness of 3H compared to 2H of the coating films from TiO2 nanoparticles. Besides, the refractive index of the coating films from TiO2-SnO2 nanoparticles enhanced from 1.543 to 1.623 at 633 nm as the Sn/Ti molar ratio increased from 0 to 0.5.
[References]
  1. Yoshida M, Prasad PN, Chem. Mater., 8, 235, 1996
  2. Nakayama N, Hayashi T, J. Appl. Polym. Sci., 105(6), 3662, 2007
  3. Muller P, Braune B, Becker C, Krug H, Schmidt H, SPIE, 3136, 462, 1997
  4. Nakayama N, Hayashi T, Colloids Surf. A: Physicochem. Eng. Asp., 317, 543, 2008
  5. Choi JJ, Kim NU, Ahn CY, Song KC, Korean Chem. Eng. Res., 52(3), 388, 2014
  6. You YS, Chung KH, Kim YM, Kim JH, Seo G, Korean J. Chem. Eng., 20(1), 58, 2003
  7. Nakayama N, Hayashi T, Compos. Pt. A-Appl. Sci. Manuf., 38, 1996, 2007
  8. Rahal A, Benhaoua A, Jlassi M, Benhaoua B, Superlattices Microstruct., 86, 403, 2015
  9. ASTM D3359, “Standard Test Methods for Measuring Adhesion by Tape Test,” ASTM International, 927-929(1997).
  10. Song KC, Pratsinis SE, J. Colloid Interface Sci., 231(2), 289, 2000
  11. Jung M, Kwak Y, J. Korean Ind. Eng. Chem., 18(6), 650, 2007
  12. Liu Y, Lu C, Li M, Zhang L, Yang B, Colloids Surf. A: Physicochem. Eng. Asp., 328, 67, 2008
  13. Yoshida M, Prasad PN, Chem. Mater., 8, 235, 1996
  14. Nakayama N, Hayashi T, J. Appl. Polym. Sci., 105(6), 3662, 2007
  15. Muller P, Braune B, Becker C, Krug H, Schmidt H, SPIE, 3136, 462, 1997
  16. Nakayama N, Hayashi T, Colloids Surf. A: Physicochem. Eng. Asp., 317, 543, 2008
  17. Choi JJ, Kim NU, Ahn CY, Song KC, Korean Chem. Eng. Res., 52(3), 388, 2014
  18. You YS, Chung KH, Kim YM, Kim JH, Seo G, Korean J. Chem. Eng., 20(1), 58, 2003
  19. Nakayama N, Hayashi T, Compos. Pt. A-Appl. Sci. Manuf., 38, 1996, 2007
  20. Rahal A, Benhaoua A, Jlassi M, Benhaoua B, Superlattices Microstruct., 86, 403, 2015
  21. ASTM D3359, “Standard Test Methods for Measuring Adhesion by Tape Test,” ASTM International, 927-929(1997).
  22. Song KC, Pratsinis SE, J. Colloid Interface Sci., 231(2), 289, 2000
  23. Jung M, Kwak Y, J. Korean Ind. Eng. Chem., 18(6), 650, 2007
  24. Liu Y, Lu C, Li M, Zhang L, Yang B, Colloids Surf. A: Physicochem. Eng. Asp., 328, 67, 2008