Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.6, 746-754, 2015
다양한 온도에서 석탄/바이오매스의 혼합 촤-CO2 가스화 반응특성 연구
Kinetic Study of Coal/Biomass Blended Char-CO2 Gasification Reaction at Various temperature
본 연구는 이온교환법을 통해 Ni촉매를 담지한 저등급 석탄(인도네시아 Eco탄)과 바이오매스(대한민국 상록수)의 혼합물로부터 제조된 촤(char)를 700~900 oC 등온조건에서 온도가 반응속도에 미치는 영향에 대해 알아보았다. Char-CO2 가스화 반응은 700, 750, 800, 850, 900 oC의 온도에서 진행하였으며, 기-고체 반응의 가스화 거동특성을 알아보기 위하여 각각 다른 가정을 갖고 있는 shrinking core model(SCM), volumetric reaction model(VRM), random pore model (RPM), modified volumetric reaction model(MVRM)을 실험결과에 적용하여 비교하였다. Arrhenius equation를 이용하여 Ni-coal/biomass와 Non-catalyst coal/biomass의 활성화에너지를 구하였고 이를 비교하였다.
In this study, we investigated the effects of the temperature on the coal/biomass char-CO2 gasification reaction under isothermal conditions of 700~900 oC using the lignite(Indonesia Eco coal) with biomass (korea cypress). Ni catalysts were impregnated on the coal by the ion-exchange method. Four kinetic models which are shrinking core model (SCM), volumetric reaction model (VRM), random pore model (RPM) and modified volumetric reaction model (MVRM) for gas-solid reaction were applied to the experimental data against the measured kinetic data. The Activation energy of Ni-coal/biomass, non-catalyst coal/biomass Char-CO2 gasification was calculated from the Arrhenius equation.
[References]
  1. British Petroleum., “BP Statistical Review of World Energy 2013”.
  2. Gong S, Zhu X, Kim Y, Song B, Yang W, Moon W, Byoun Y, Korean Chem. Eng. Res., 48(1), 80, 2010
  3. Lee SH, Kim SD, Korean Chem. Eng. Res., 46(1), 443, 2008
  4. Park DK, Kim SD, Lee SH, Lee JG, Bioresour. Technol., 101(15), 6151, 2010
  5. Umar DF, Usui H, Komoda Y, Fuel, 90(4), 611, 2009
  6. Hall DO, Energy, 19(8), 711, 1991
  7. Pan YG, Velo E, Roca X, Manya JJ, Puigjaner L, Fuel, 70(11), 1317, 2000
  8. Wu CZ, Huang H, Zheng SP, Yin XL, Bioresour. Technol., 83(1), 65, 2002
  9. Taba LE, Irfan MF, Wan AM, Wan D, Chakrabarti MH, Renew. Sust. Energ. Rev., 16(8), 5584, 2012
  10. Miccio F, Ruoppolo G, Kalisz S, Andersen L, Morgan TJ, Baxter D, Fuel, 95(22), 45, 2012
  11. Kim DW, Lee JM, Kim JS, Seon PK, Korean Chem. Eng. Res., 48(1), 58, 2010
  12. Williams A, Pourkashanian M, Jones JM, Prog. Energy Combust. Sci., 27(6), 587, 2001
  13. Lee SH, Hyun JS, Rhim YJ, Park YY, Kim SC, Energy Eng., 4(5), 197, 2003
  14. Corella J, Toledo JM, Molina G, Ind. Eng. Chem. Res., 45(18), 6137, 2006
  15. Park JY, Lee DK, Hwang SC, Kim SK, Lee SH, Yoon SK, Yoo JH, Lee SH, Rhee YW, Clean Technol., 19(3), 306, 2013
  16. Walker PL, Shelef M, Anderson RA, Chem. Phys. Carbon, 4(13), 287, 1968
  17. McKee DW, Carbon, 20(1), 59, 1982
  18. Ochoa J, Cassanello MC, Bonelli PR, Cukierman AL, Fuel Process. Technol., 74(3), 161, 2001
  19. Ye DP, Agnew JB, Zhang DK, Fuel, 77(11), 1209, 1998
  20. Xiao X, Cao J, Meng X, Le LL, Ogawa Y, Sato K, Fuel, 130, 135, 2013
  21. Li L, Morishita K, Mogi H, Yamasaki K, Takarada T, Fuel, 91(8), 889, 2010
  22. Roberts DG, Harris DJ, Fuel, 86(17-18), 2672, 2007
  23. Tomitam A, Yoshida K, Nishiyama Y, Tamai Y, Carbon, 10, 601, 1972
  24. Tomitam A, Ohtsuka Y, Tamai Y, Fuel, 62, 105, 1983
  25. Kim DH, Choi SM, Christopher R, Shaddix MG, Fuel, 120(15), 130, 2014
  26. Lee DK, Kim SK, Hwang SC, Lee SH, Rhee YW, Korean Chem. Eng. Res., 52(4), 544, 2014
  27. Wen CY, J. Ind. Eng. Chem., 60(9), 34, 1968
  28. Shida M, Wen CY, AIChE J., 14(2), 311, 1968
  29. Asaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25(1), 1985
  30. Bhatia SK, Perlmutter DD, AIChE J., 23(3), 379, 1980
  31. Kim SH, Rhee YW, “Reforming of Toluene Using Nickelloaded Coal,” 2014.
  32. Choi YK, Moon SH, Lee HI, Lee WY, Rhee HK, Korean Chem. Eng. Res., 30(3), 292, 1992
  33. Bak YC, Yang HS, Son JE, HWAHAK KONGHAK, 29(3), 323, 1991
  34. LEE IC, Korean J. Chem. Eng., 4(2), 194, 1987
  35. Hippo EJ, Jenkins RG, Walker PL, Fuel, 58(5), 338, 1979
  36. Liu GS, Tate AG, Bryant GW, Wall TF, Fuel, 79(10), 1145, 2000
  37. Kajitani S, Suzuki N, Ashizawa M, Hara S, Fuel, 85(2), 163, 2006
  38. Kim YT, Seo DK, Hwang J, Korean Chem. Eng. Res., 49(3), 372, 2011
  39. Gomez-Barea A, Ollero P, Fernandez-Baco C, Energy Fuels, 20(5), 2202, 2006
  40. Li S, Cheng Y, Fuel, 74(3), 456, 1995
  41. Song BH, Jang YW, Byoun YS, Korean Chem. Eng. Res., 41(3), 349, 2003
  42. Miura K, Aimi M, Naito T, Hashimoto K, Fuel, 65(3), 407, 1986
  43. Chan FL, Tanksale A, Renew. Sust. Energ. Rev., 38, 428, 2014
  44. Kim YT, Seo DK, Hwang JH, Korean Society of Combustion, 15(2), 41, 2010
  45. Zhang LX, Huang JJ, Fang YT, Wang Y, Energy Fuels, 20(3), 1201, 2006
  46. Tangsathitkulchai C, Junpirom S, Katesa J, Ind. Crop. Prod., 17(1), 13, 2012
  47. Song BH, Kim SD, Korean Chem. Eng. Res., 72(6), 797, 1993
  48. Jeong HJ, Park SS, Hwang JH, Fuel, 116(15), 465, 2014
  49. Kayembe N, Pulsifer AH, Fuel, 55(3), 211, 1976
  50. Li S, Cheng Y, Fuel, 74(3), 456, 1995