Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.6, 740-745, 2015
미세유체 장치에서 수거 방법에 따른 펙틴 하이드로겔 입자의 특성 비교
Comparison of Pectin Hydrogel Collection Methods in Microfluidic Device
본 연구는 미세유체 장치를 통해 제조가 이루어진 펙틴 하이드로겔 입자의 수거 방법을 다르게 하였을 때 각 방법에 따른 하이드로겔의 물리적 특성을 비교한 것이다. 펙틴 하이드로겔 입자는 미세유체 채널 내에서 미네랄 오일에 분산된 칼슘 이온에 의해 겔화되고 이후 각각 파이펫팅법, 튜브법, 침전법을 통해 수거하였다. 각 방법으로 수거된 펙틴 하이드로겔 입자의 단분산성을 분석한 결과 침전법의 변동 계수(Coefficient of variation)는 3.46으로 파이펫팅법(18.60)과 튜브법(14.76)의 변동 계수보다 월등히 낮아 가장 우수한 단분산성 하이드로겔 입자를 만들 수 있었다. 상기 침전법을 이용한 조건에서 분산상과 연속상의 부피유속 및 펙틴 용액의 점도를 조절함으로써 30 μm에서 180 μm까지의 다양한 크기를 갖는 단분산성 펙틴 하이드로겔을 제조할 수 있었다. 본 논문에서 제시한 펙틴 하이드로겔 입자는 생체 물질을 손쉽게 함입할 수 있으므로 이는 향후 약물전달, 식품, 그리고 생체적합성 재료 등으로 활용 가능할 것으로 기대된다.
This study investigated the effect of different collection methods on physical properties of pectin hydrogels in microfluidic synthetic approach. The pectin hydrogels were simply produced by the incorporation of calcium ions dissolved in continuous mineral oil. Then, different collection methods, pipetting, tubing, and settling, for harvesting pectin hydrogels were applied. The settling method showed most uniform and monodispersed hydrogels. In the case of settling, a coefficient of variation was 3.46 which was lower than pipetting method (18.60) and tubing method (14.76). Under the settling method, we could control the size of hydrogels, ranging from 30 μm to 180 μm, by simple manipulation of the viscosity of pectin and volumetric flow rate of dispersed and continuous phase. Finally, according to the characteristics of simple encapsulation of biological materials, we envision that the pectin hydrogels can be applied to drug delivery, food, and biocompatible materials.
[References]
  1. Hoare TR, Kohane DS, Polymer, 49(8), 1993, 2008
  2. Lian Z, Ye L, J. Polym. Res., 22, 1, 2015
  3. Lee E, Kim B, Korean J. Chem. Eng., 28(6), 1347, 2011
  4. Enas MA, J. Adv. Res., 6, 105, 2015
  5. Bajpai A, Shukla SK, Bhanu S, Kankane S, Prog. Polym. Sci, 33, 1088, 2008
  6. Zhao QS, Ji QX, Xing K, Li XY, Liu CS, Chen XG, Carbohydr. Polym., 76, 410, 2009
  7. Allwyn SRA, Rubila RJS, Ranganathan TV, Sci. Rep., 1, 550, 2012
  8. Munarin F, Petrini P, Tanzi MC, Barbosa MA, Granja PL, Soft Matter, 8, 4731, 2012
  9. Ngouemazong DE, Jolie RP, Cardinaels R, Fraeye I, Van Loey A, Moldenaers P, Hendrickx M, Carbohydr. Res., 348, 69, 2012
  10. Munarin F, Guerreiro SG, Grellier MA, Tanzi MC, Barbosa MA, Petrini P, Granja PL, Biomacromolecules, 12(3), 568, 2011
  11. Silva CM, Ribeiro AJ, Figueiredo IV, Goncalves AR, Veiga F, Int. J. Pharm., 311, 1, 2006
  12. Jeong HH, Jin SH, Lee BJ, Kim T, Lee CS, Lab Chip, 15, 889, 2015
  13. Jin SH, Kim J, Jang SC, Noh YM, Lee CS, Korean Chem. Eng. Res., 52(1), 106, 2014
  14. Wieduwild R, Krishnan S, Chwalek K, Boden A, Nowak M, Drechsel D, Werner C, Zhang Y, Angew. Chem.-Int. Edit., 54, 3962, 2015
  15. Tan YC, Hettiarachchi K, Siu M, Pan YP, J. Am. Chem. Soc., 128(17), 5656, 2006
  16. Orive G, Hernandez RM, Gascon AR, Calafiore R, Chang TM, De Vos P, Hortelano G, Hunkeler D, Lacik, ShapiroI AJ, Pedraz JL, Nat. Med., 9, 104, 2003
  17. Vinogradov SV, Bronich TK, Kabanov AV, Adv. Drug Deliv. Rev., 54, 135, 2002
  18. Sjostrom SL, Joensson HN, Svahn HA, Lab Chip, 13, 1754, 2013
  19. Park KJ, Lee KG, Seok S, Choi BG, Lee MK, Park TJ, Park JY, Kim DH, Lee SJ, Lab Chip, 14, 1873, 2014
  20. Chau M, Abolhasani M, Therien-Aubin H, Li Y, Wang YH, Velasco D, Tumarkin E, Ramachandran A, Kumacheva E, Biomacromolecules, 15(7), 2419, 2014
  21. Marquis M, Davy J, Fang AP, Renard D, Biomacromolecules, 15(5), 1568, 2014
  22. Tan WH, Takeuchi S, Adv. Mater., 19(18), 2696, 2007
  23. Chan L, Lee H, Heng P, Int. J. Pharm., 242, 259, 2002
  24. Lin YS, Yang CH, Hsu YY, Hsieh CL, Electrophoresis, 34(3), 425, 2013
  25. Mele E, Fragouli D, Ruffilli R, De Gregorio GL, Cingolani R, Athanassiou A, Soft Matter, 9, 6338, 2013
  26. Hu Y, Wang Q, Wang J, Zhu J, Wang H, Yang Y, Biomicrofluidics, 6, 026502, 2012
  27. Song YS, Lee CS, Korean Chem. Eng. Res., 52(5), 632, 2014
  28. Bremond N, Thiam AR, Bibette J, Phys. Rev. Lett., 100, 024501, 2008
  29. Liu K, Ding H, Chen Y, Zhao XZ, Microfluid Nanofluidics, 3, 239, 2007
  30. Hu Y, Azadi G, Ardekani AM, Carbohydr. Polym., 120, 38, 2015
  31. Choi CH, Jung JH, Hwang TS, Lee CS, Macromol. Res., 17(3), 163, 2009