Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.6, 723-729, 2015
역상 크로마토그래피에서 모멘트 방법과 van Deemter 식을 이용한 고리형 아데노신 일인산의 분리특성 연구
Analysis of Cyclic Adenosine Monophosphate (cAMP) Separation via RP-HPLC (reversed-phase high-performance liquid chromatography) by the Moment Method and the van Deemter Equation
고성능액체크로마토그래피(high-performance liquid chromatography, HPLC)에서 C18(octadecyl silica, ODS) 칼럼에서 고리형 아데노신 일인산(cyclic adenosine monophosphate, cAMP)의 크로마토그램을 얻은 후, 모멘트 분석을 수행하였다. 일반속도 모델(general rate model, GR model)을 기반으로 first absolute moment와 second central moment를 계산하였다. 모멘트 분석의 중요한 세 가지 계수인 분자확산계수(molecular diffusivity, Dm), 외부물질전달계수(external mass transfer coefficient, kf), 입자내부확산계수(intra-particle diffusivity, De)는 각각 Wilke-Chang 식, Wilson-Geankoplis 식을 이용하고 이론단수(theoretical plate number) 식과 van Deemter 식을 비교하여 계산하였다. 실험은 각각 세 가지의 이동상 조성, 용질 농도, 유량 조건에서 수행하였다. Van Deemter 그래프를 그려 모멘트 분석결과를 정성적으로 정리했으며, 이론단 상당높이(height equivalent to a theoretical plate, HETP, Htotal)에 Hax, Hf, Hd가 미치는 영향을 알아보기 위해 van Deemter coefficient를 비교했다. HETP에 가장 큰 영향을 주는 요인은 입자내부확산(Hd)이었으며 외부물질 전달(Hf)는 그 영향이 매우 작았다.
The moment analysis of cyclic adenosine monophosphate (cAMP) was performed using chromatograms that were obtained with the pulse input method from an octadecyl silica (ODS) high-performance liquid chromatography (HPLC) column. The general rate (GR) model was employed to calculate the first absolute moment and the second central moment. Three important coefficients for moment analysis, which are molecular diffusivity (Dm), external mass transfer coefficient (kf), and intra-particle diffusivity (De), were estimated by the Wilke-Chang equation, Wilson-Geankoplis equation, and comparing van Deemter equation to theoretical plate number equation, respectively. Experiments were conducted by various conditions of flow rates, methanol volume ratio of the mobile phase, and solute concentration. After the moment analysis, results were organized by van Deemter plots. Also van Deemter coefficients were compared each other to effect Hax, Hf, and Hd on height equivalent to a theoretical plate (HETP, Htotal). The value of intraparticle diffusion (Hd) was the primary factor which makes for HETP whereas external mass transfer (Hf) was disregardable factor.
[References]
  1. Miyabe K, Suzuki M, AIChE J., 38, 901, 1992
  2. Miyabe K, Guiochon G, J. Sep. Sci., 26, 155, 2003
  3. Miyabe K, J. Sep. Sci., 32, 757, 2009
  4. Choi DY, Row KH, J. Ind. Eng. Chem., 10(6), 1052, 2004
  5. Wilson EJ, Geankoplis CJ, Ind. Eng. Chem. Fundam., 5, 9, 1966
  6. Grushka E, Snyder LR, Knox JH, J. Chromatogr. Sci., 13, 25, 1975
  7. Seirafi HA, Smith JM, AIChE J., 26, 711, 1980
  8. Gunn DJ, Chem. Eng. Sci., 42, 363, 1987
  9. Tallarek U, Albert K, Bayer E, Guiochon G, AIChE J., 42(11), 3041, 1996
  10. Tallarek U, Bayer E, Guiochon G, J. Am. Chem. Soc., 120(7), 1494, 1998
  11. Tallarek U, Bayer E, van Dusschoten D, Scheenen T, Van As H, Guiochon G, Neue UD, AIChE J., 44(9), 1962, 1998
  12. Tallarek U, Dusschoten DV, As VH, Guiochon G, Bayer E, Magn. Reson., 16, 699, 1998
  13. Tallarek U, Dusschoten DV, As HV, Bayer E, Guiochon G, J. Phys. Chem. B, 102, 3489, 1998
  14. Sajonz P, Guansajonz H, Zhong GM, Guiochon G, Biotechnol. Prog., 13(2), 170, 1997
  15. Sajonz P, Kele M, Zhong G, Sellergen B, Guiochon G, J. Chromatogr. A, 810, 1, 1998
  16. Miyabe K, Guiochon G, Biotechnol. Prog., 15(4), 740, 1999
  17. Miyabe K, Canazzini A, Gritti F, Kele M, Guiochon G, Anal. Chem., 75, 6975, 2003
  18. Miyabe K, Guiochon G, J. Chromatogr. A, 1217, 1713, 2010
  19. Gritti F, Guiochon G, AIChE J., 57(2), 346, 2011
  20. Silva IJD, Veredas D, Carpes MJS, Santana CC, Adsorption, 11, 123, 2005
  21. Spoto G, Whitehead E, Ferraro AD, Terlizzi PM, Turano C, Riva F, Anal. Biochem., 196, 207, 1991
  22. Zhang Y, Lu P, Wang H, Zhang J, Li H, Liu J, J. Food Sci., 30, 321, 2009
  23. Miyabe K, Isogai R, J. Chromatogr. A, 1218, 6639, 2011
  24. Choi DY, Row KH, J. Ind. Eng. Chem., 10(6), 1052, 2004
  25. Won HJ, Kim IH, Biotechnol. Bioeng., 6, 31, 2001
  26. Kim IH, Kim JT, Korean J. Chem. Eng., 15(6), 575, 1998
  27. Wang YJ, Gerard C, Macromolecules, 22, 3781, 1989
  28. Lee CH, Kang JH, Row KH, Biotechnol. Bioeng., 7, 16, 2002
  29. Ra YJ, Jung YA, Row KH, Biotechnol. Bioeng., 17, 88, 2002
  30. Park IS, Ahn DY, Korean Chem. Eng. Res., 27, 331, 1989