Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.5, 632-637, 2015
Improvement of Light-Harvesting Efficiency of TiO2 Granules Through Chemical Interconnection of Nanoparticles by Adding TEOT to Spray Solution
Mesoporous TiO2 granules were prepared by spray pyrolysis using nano-sized titania particles which were synthesized by a hydrothermal method, and they were evaluated as the photoanode of dye-sensitized solar cells. To enhance the cell efficiency, nanoparticles within granules were chemically interconnected by adding titanium ethoxide (TEOT) to colloidal spray solution. The resulting titania particles had anatase phase without forming rutile. TiO2 granules obtained showed about 400 nm in size, the specific surface area of 74-77 m2/g, and average pore size of 13-17 nm. The chemical modification of TiO2 granules by adding TEOT initially to the colloidal spray solution was proved to be an effective way in terms of increasing both the light scattering within photoanode and the lifetimes of photo-excited electrons. Consequently, the light-harvesting efficiency of TEOT-modified granules (η=6.72%) was enhanced about 14% higher than primitive nanoparticles.
[References]
  1. O’Regan B, Gratzel M, Nature, 353, 737, 1991
  2. Rhee SW, Kwon W, Korean J. Chem. Eng., 28(7), 1481, 2011
  3. Wang ZS, Kawauchi H, Kashima T, Arakawa H, Coordin. Chem. Rev., 248, 1381, 2004
  4. Park NG, Korean J. Chem. Eng., 27(2), 375, 2010
  5. Jang KI, Hong E, Kim JH, Korean J. Chem. Eng., 29(3), 356, 2012
  6. Battumur T, Yang W, Ambade SB, Lee SH, Korean Chem. Eng. Res., 50(1), 177, 2012
  7. Kim HN, Moon JH, Appl. Mater. Interf., 4(11), 5821, 2012
  8. Zuh X, Tsuji H, Yella A, Chauvin AS, Grazel M, Nakamura E, Chem. Commun., 49, 582, 2013
  9. Lee S, Jeon Y, Lim Y, Hossain MA, Lee S, Cho Y, Ju H, Kim W, Electrochim. Acta, 107, 675, 2013
  10. Ludin NA, Mahmoud AMAA, Mohamad AB, Kadhum AAH, Sopian K, Karim NSA, Renew. Sust. Energ. Rev., 31, 386, 2014
  11. Sabba D, Agarwala S, Pramana SS, Mhaisalkar S, Nanoscale Res. Lett., 9, 14, 2014
  12. Lamberti A, Sacco A, Bianco S, Manfredi D, Cappelluti F, Hernadez S, Quaglio M, Pirri CF, Phys. Chem. Chem. Phys., 15, 2596, 2013
  13. Sauvage F, Chen D, Comte P, Huang F, Heiniger LP, Cheng YB, Caruso RA, Graetzel M, ACS Nano, 4(8), 4420, 2010
  14. Lee SW, Ahn KS, Zhu K, Neale NR, Frank AJ, J. Phys. Chem. C, 116, 21285, 2012
  15. O’Regan BC, Durrant JR, Sommeling PM, Bakker NJ, J. Phys. Chem. C, 111, 14001, 2007
  16. Fuke N, Katoh R, Islam A, Kasuya M, Furube A, Fukui A, Chiba Y, Komiya R, Yamanaka R, Han L, Harima H, Energ. Environ. Sci., 2, 1205, 2009
  17. Chen DH, Huang FZ, Cheng YB, Caruso RA, Adv. Mater., 21(21), 2206, 2009
  18. Wang Q, Moser JE, Gratzel M, J. Phys. Chem. B, 109(31), 14945, 2005
  19. Bisquert J, Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Gimenez S, J. Phys. Chem. C, 113(40), 17278, 2009