Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.5, 531-539, 2015
DSA 전극에서 염소 발생 메커니즘
A Review of Chlorine Evolution Mechanism on Dimensionally Stable Anode (DSA®)
클로로알카리 산업은 염화나트륨 수용액의 전기분해로 연간 약 7천만 톤의 가성소다 및 염소를 생산하는 전 세계적으로 가장 큰 전기화학 공정 중 하나이다. 클로로알카리 공정에서는 DSA(Dimensionally Stable Anodes) 전극인 RuO2 및 IrO2를 주로 사용하여 염소를 생산하며 상업적으로 사용되고 있는 전극에 비하여 염소 발생 효율이 높은 전극을 개발하려는 연구가 계속되고 있다. 그러나 보다 염소 발생 효율이 좋은 전극을 개발하기 위해서는 DSA 전극에서의 염소 발생 메커니즘에 대한 이해가 뒷받침되어야 한다. 따라서 본 글에서는 기존 연구를 중심으로 DSA 전극에서 염소 발생 메커니즘 연구가 현재까지 어떻게 발전되어 왔는지 검토하고 염소 발생 메커니즘의 핵심적인 요인들을 분석 및 정리하여 DSA 전극에서 염소 발생을 체계적으로 이해하는데 도움이 되고자 한다.
Chlor-alkali industry is one of the largest electrochemical processes which annually producing 70 million tons of sodium hydroxide and chlorine from sodium chloride solution. DSA® (Dimensionally Stable Anodes) electrodes such as RuO2 and IrO2, which is popular in chlor-alkali process, have been investigated to improve the chlorine generation efficiency. Although DSA electrode has been developed with various researches, understanding of the chlorine evolution mechanism is essential to the development of highly efficient DSA electrode. In this review paper, chlorine generation mechanisms are summarized and that of key factors are identified to systematically understand the chlorine generation mechanism. Rate determining step, effect of pH, reaction intermediate, and electrode crystal structure were intensively overviewed as key factors of the chlorine mechanism.
[References]
  1. Trasatti S, Electrochim. Acta, 29, 1503, 1984
  2. Trasatti S, Electrochim. Acta, 45(15-16), 2377, 2000
  3. Hong-li F, Chlor-Alkali Industry, 9, 41, 2000
  4. Walton CW, White RE, J. Electrochem. Soc., 134, 565C, 1987
  5. Khelifa A, Moulay S, Hannane F, Benslimene S, Hecini M, Desalination, 160(1), 91, 2004
  6. Bard AJ, Faulkner LR, “Electrochemical Methods: Fundamentals and Applications,” 2nd Ed., Wiley, New York(2001).
  7. Tattum L, “Cw's Asia Chemical Prices for the Week Ended May 26, 2009,” IHS Chemical Week, New York(2009).
  8. Trasatti S, Electrochim. Acta, 32, 369, 1987
  9. Over H, Electrochim. Acta, 93, 313, 2013
  10. Trasatti S, J. Electroanal. Chem., 111, 125, 1980
  11. Harrison J, Caldwell D, White R, Electrochim. Acta, 28, 1561, 1983
  12. Harrison J, Caldwell D, White R, Electrochim. Acta, 29, 203, 1984
  13. Choi J, Shim S, Yoon J, J. Ind. Eng. Chem., 19(1), 215, 2013
  14. Luu TL, Kim J, Yoon J, J. Ind. Eng. Chem., 21, 400, 2015
  15. Choi J, Park CG, Yoon J, Transactions of The Royal Society of Tropical Medicine and Hygiene, 107, 124, 2013
  16. Jirkovsky J, Hoffmannova H, Klementova M, Krtil P, J. Electrochem. Soc., 153(6), E111, 2006
  17. Ferro S, De Battisti A, J. Phys. Chem. B, 106(9), 2249, 2002
  18. Cao HZ, Lu DH, Lin JP, Ye Q, Wu JJ, Zheng GQ, Electrochim. Acta, 91, 234, 2013
  19. Trieu V, Schley B, Natter H, Kintrup J, Bulan A, Hempelmann R, Electrochim. Acta, 78, 188, 2012
  20. Pankratiev YD, React. Kinet. Catal. Lett., 20, 255, 1982
  21. Cordfunke E, Konings R, Thermochim. Acta, 129, 63, 1988
  22. Ruetschi P, Delahay P, J. Chem. Phys., 23, 556, 1955
  23. O'M BJ, J. Chem. Phys., 24, 817, 1956
  24. Conway , Salomon M, Electrochim. Acta, 9, 1599, 1964
  25. Zeradjanin AR, Menzel N, Strasser P, Schuhmann W, ChemSusChem, 5, 1897, 2012
  26. Bianchi G, J. Appl. Electrochem., 1, 231, 1971
  27. Erenburg R, Krishtalik L, Bystrov V, Elektrokhirniya, 8, 1740, 1972
  28. Kuhn A, Mortimer C, J. Electrochem. Soc., 120, 231, 1973
  29. Hansen HA, Man IC, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J, Phys. Chem. Chem. Phys., 12, 283, 2010
  30. Vallet CE, Tilak BV, Zuhr RA, Chen CP, J. Electrochem. Soc., 144(4), 1289, 1997
  31. Zeradjanin AR, Schilling T, Seisel S, Bron M, Schuhmann W, Anal. Chem., 83, 7645, 2011
  32. Ardizzone S, Carugati A, Lodi G, Trasatti S, J. Electrochem. Soc., 129, 1689, 1982
  33. Zeradjanin AR, La Mantia F, Masa J, Schuhmann W, Electrochim. Acta, 82, 408, 2012
  34. Lodi G, Sivieri E, Battisti AD, Trasatti S, J. Appl. Electrochem., 8, 135, 1978
  35. Losev V, Bune NY, Chuvaeva L, Electrochim. Acta, 34, 929, 1989
  36. Erenburg R, Krishtalik L, Yaroshevskaya I, Electrochemistry, 11, 989, 1975
  37. Janssen L, Visser G, Barendrecht E, Electrochim. Acta, 28, 155, 1983
  38. Faita G, Fiori G, J. Appl. Electrochem., 2, 31, 1972
  39. Chen R, Trieu V, Zeradjanin AR, Natter H, Teschner D, Kintrup J, Bulan A, Schuhmann W, Hempelmann R, Phys. Chem. Chem. Phys., 14, 7392, 2012
  40. Augustynski J, Balsenc L, Hinden J, J. Electrochem. Soc., 125, 1093, 1978
  41. Krishtalik L, Erenburg R, Moscow. Nauka, 240, 1981
  42. Guerrini E, Trasatti S, Russ. J. Electrochem., 42, 1017, 2006
  43. Consonni V, Trasatti S, Pollak F, O'Grady W, J. Electroanal. Chem., 228, 393, 1987
  44. Hepel T, Pollak FH, O'Grady WE, J. Electrochem. Soc., 133, 69, 1986
  45. Burke LD, O'Neill JF, J. Electroanal. Chem., 101, 341, 1979
  46. Krishtalik L, Electrochim. Acta, 26, 329, 1981
  47. Fernandez JL, de Chialvo MRG, Chialvo AC, Electrochim. Acta, 47(7), 1145, 2002
  48. Thomassen M, Karlsen C, Borresen B, Tunold R, Electrochim. Acta, 51(14), 2909, 2006
  49. Comninellis C, Electrochim. Acta, 39(11-12), 1857, 1994
  50. Erenburg R, Krishtalik L, Bystrov V, Sov. Electrochem, 8, 1240, 1972
  51. Janssen L, Starmans L, Visser J, Barendrecht E, Electrochim. Acta, 22, 1093, 1977
  52. Denton D, Harrison J, Knowles R, Electrochim. Acta, 24, 521, 1979
  53. Erenburg R, Sov. Electrochem, 20, 1481, 1984
  54. Fernandez JL, de Chialvo MRG, Chialvo AC, Electrochim. Acta, 47(7), 1129, 2002
  55. Fernandez JL, de Chialvo MRG, Chialvo AC, Electrochim. Acta, 47(7), 1137, 2002