Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.4, 524-529, 2015
반응표면분석법을 통한 Enterobacteriaceae sp. PAMC 25617의 protease 생산배지 최적화
Optimization of Medium for Protease Production by Enterobacteriaceae sp. PAMC 25617 by Response Surface Methodology
본 논문에서는 저온활성 protease의 생산을 최적화하기 위하여 극지 미생물인 Enterobacteriaceae sp. PAMC 25617의 반응표면분석법을 이용한 배지의 최적화를 수행하였다. One-factor-at-a-time 방법을 이용하여 yeast extract, TritonX-100이 protease의 생산에 영향을 미치는 주요인자인 것을 확인하였다. 물리적인 환경 요인으로 pH를 추가하여 반응표면분석 방법을 이용한 최대 protease 생산 농도를 갖는 각 인자들의 농도를 확인한 결과 5 g/L peptone, 3 g/L malt extract, 10 g/L C6H12O6, 6.690 g/L yeast extract, 0.018 g/L TritonX-100의 농도에 pH 6.777의 조건에서 미생물을 배양하였을 경우, 최대 10.049 U/L의 protease가 생산될 수 있는 것으로 예측되었다. 실제 배양 결과 8.03 U/L의 protease가 얻어졌으며, 최적화 이전의 생산농도와 비교하여 150% 이상의 증가를 이루었다. 결과적으로 배지최적화를 통한 protease 생산량의 증가에 반응표면분석법의 적용이 유용하다는 것을 확인할 수 있는다. 이러한 결과로부터, 배지 최적화를 이용한 극지미생물 유래 cold-adapted protease 생산량의 증가가 여러 산업 분야에서 유용하게 이용될 수 있을 것으로 생각된다.
This study was conducted to optimize the medium composition for cold-adaptive protease production of Enterobacteriaceae sp. by response surface methodology (RSM). Yeast extract, and TritonX-100 were identified as the significant factors affecting protease from one-factor-at-a-time method. RSM studies for optimizing protease production of Enterobacteriaceae sp. have been carried out for three parameters including yeast extract concentration, TritonX-100 concentration, and culture pH. These significant factors were optimized as 6.690 g/L yeast extract, 0.018 g/L Triton™ X-10, and pH 6.677. The experimentally obtained protease activity was 8.03 U /L, and it became 1.5-fold increase before optimization.
[References]
  1. Nichols D, Bowman J, Sanderson K, Nichols CM, Lewis T, McMeekin T, Nichols PD, Curr. Opin. Biotechnol., 10, 240, 1999
  2. Antranikian G, Egorova K, “Extremophiles, a Unique Resource of Biocatalysts for Industrial Biotechnology,” Physiology and Biochemistry of Extremophiles. ASM Press. Washington, 361-406(2007).
  3. Huston AL, “Biotechnological Aspects of Cold-adapted Enzymes,” In Psychrophiles: From Biodiversity to Biotechnology. Springer. Berlin. Heidelberg, 347-363(2008).
  4. Kim DK, Park HJ, Lee YM, Hong SG, Lee HK, Yim JH, Korean J. Microbiol., 46, 73, 2010
  5. Zhu HY, Tian Y, Hou YH, Wang TH, Mol. Boil. rep., 36, 2169, 2009
  6. Georlette D, Blaise V, Collins T, D`Amico S, Gratia E, Hoyoux A, Marx J, Sonan G, Feller G, Gerday C, FEMS microbial. Rev., 28, 25, 2004
  7. Yang J, Li J, Mai ZM, Tian XP, Zhang S, J. Biosci. Bioeng., 115(6), 628, 2013
  8. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D`Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G, Trends Biotechnol., 18, 103, 2000
  9. Dastager SG, Dayanand A, Li WJ, Kim CJ, Lee JC, Park DJ, Tian XP, Raziuddin QS, Curr. Microbiol., 57(6), 638, 2008
  10. Kirk O, Borchert TV, Fuglsang CC, Curr. Opin. Biotechnol., 13, 345, 2002
  11. Cherry JR, Fidantsef AL, Curr. Opin. Biotechnol., 14, 438, 2003
  12. Daniel RM, Toogood HS, Bergquist PL, Biotech. Genet. Eng. Rev., 13, 51, 1996
  13. Gupta R, Beg QK, Lorenz P, Appl. Microbiol. Biotechnol., 59(1), 15, 2002
  14. Anisworth SJ, Chem. Eng. News., 70, 27, 1992
  15. Marx JC, Collins T, D’Amico S, Feller G, Gerday C, Marine Biotechnol., 9, 293, 2007
  16. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR, Curr. Opin. Biotechnol., 13, 253, 2002
  17. Wang QF, Hou YH, Xu Z, Miao JL, Li GY, Bioresour. Technol., 99(6), 1926, 2008
  18. Irwin JA, Alfredsson GA, Lanzetti AJ, Gudmundsson HM, Engel PC, FEMS Microbiol. Let., 201, 285, 2001
  19. Siddiqui KS, Cavicchioli R, Annual Rev. Biochem., 75, 403, 2006
  20. Kackar RN, J. Quality Technol., 17, 176, 1985
  21. Ghani JA, Choudhury IA, Hassan HH, J. Mater. Process. Technol., 145, 84, 2004
  22. Tsai JT, Liu TK, Chou JH, IEICE Trans. On, 8, 365, 2004
  23. Puri S, Beg QK, Gupta R, Curr. Microbiol., 44(4), 286, 2002
  24. Adinarayana K, Ellaiah P, J. Pharm. Sci., 5, 272, 2002
  25. Dutta JR, Dutta PK, Banerjee R, Proc. Biochem., 39, 2193, 2004
  26. Hanlon GW, Hodges NA, Russel AD, J. Gene. Microbiol., 128, 845, 1982
  27. Tabaraki R, Rastgoo S, Korean J. Chem. Eng., 31(4), 676, 2014
  28. Ilbay Z, Sahin S, Buyukkabasakal K, Korean J. Chem. Eng., 31(9), 1661, 2014
  29. Yoon CH, Bok HS, Choi DK, Row KH, Korean Chem. Eng. Res., 50(3), 545, 2012
  30. Kim JW, Korean Chem. Eng. Res., 50(5), 879, 2012
  31. Thys R, Guzzon SO, Cladera-Olivera F, Brandelli A, Process Biochem., 41, 67, 2006
  32. De Coninck J, Bouquelet S, Dumortier V, Duyme F, Verdier-Denantes I, J. Ind. Microbiol. Biotechnol., 24, 285, 2000
  33. Plotnick MI, Rubin H, Schechter NM, J. Biol. Chem., 277, 29927, 2002
  34. McKeller RC, Cholette H, Appl. Biochem. Microbiol., 47, 1224, 1984