Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.4, 509-516, 2015
Reduction Leaching of Manganese Dioxide Ore Using Black Locust as Reductant in Sulfuric Acid Solution
We investigated the reduction leaching process of manganese dioxide ore using black locust as reductant in sulfuric acid solution. The effect of parameters on the leaching efficiency of manganese was the primary focus. Experimental results indicate that manganese leaching efficiency of 97.57% was achieved under the optimal conditions: weight ratio of black locust to manganese dioxide ore (WT) of 4:10, ore particle size of 63 μm, 1.7 mol·L-1 H2SO4, liquid to solid ratio (L/S) of 5:1, leaching time of 8 h, leaching temperature of 368 K and agitation rate of 400 r·min-1. The leaching rate of manganese, based on the shrinking core model, was found to be controlled by inner diffusion through the ash/inert layer composed of associated minerals. The activation energy of reductive leaching is 17.81 kJ·mol-1. To conclude the reaction mechanism, XRD analysis of leached ore residue indicates manganese compounds disappear; FTIR characterization of leached residue of black locust sawdust shows hemicellulose and cellulose disappear after the leaching process.
[References]
  1. Liu YC, Lin QQ, Li LF, Fu JG, Zhu ZS, Wang CQ, Qian D, Int. J. Min. Sci. Technol., 24, 567, 2014
  2. Welham NJ, Int. J. Miner. Process., 67(1-4), 187, 2002
  3. Abbruzzese C, Duarte MY, Paponetti B, Toro L, Miner. Eng., 3, 307, 1990
  4. Naik PK, Sukla LB, Das SC, Hydrometallurgy, 54, 217, 2000
  5. Kanungo SB, Hydrometallurgy, 52, 313, 1999
  6. Vu H, Jandova J, Lisa K, Vranka F, Hydrometallurgy, 77, 147, 2005
  7. Bafghi MS, Zakeri A, Ghasemi Z, Adeli, Hydrometallurgy, 90, 207, 2008
  8. Sahoo RN, Naik PK, Das C, Hydrometallurgy, 62, 157, 2001
  9. Nayl AA, Ismail IM, Aly HF, Int. J. Miner. Process., 100(3-4), 116, 2011
  10. Tang Q, Zhong H, Wang S, Li JZ, Liu GY, Trans. Nonferrous Met. Soc. China, 24, 861, 2014
  11. Lasheen TA, El-Hazek MN, Helal AS, El-Nagar W, Int. J. Miner. Process., 92(3-4), 109, 2009
  12. Su HF, Wen YX, Wang F, Sun YY, Tong ZF, Hydrometallurgy, 93, 136, 2008
  13. Su HF, Liu HK, Wang F, Lu XY, Wen YX, Chin. J. Chem. Eng., 18(5), 730, 2010
  14. Cheng Z, Zhu GC, Zhao YN, Hydrometallurgy, 96, 176, 2009
  15. Tian XK, Wen XX, Yang C, Liang YJ, Pi ZB, Wang YX, Hydrometallurgy, 100, 157, 2010
  16. Yuksek T, Catena, 90, 18, 2012
  17. Tabari M, Salehi A, J. Environ. Sci., 21, 1438, 2009
  18. Mirko G, Piero O, Marco CC, Simone F, Paolo T, Francesco C, Andrea B, US Patent, 20120104313A1(2012).
  19. Zhou C, Wang J, Wang N, Korean J. Chem. Eng., 30(11), 2037, 2013
  20. Hariprasad D, Dash B, Ghosh MK, Anand S, Miner. Eng., 20(14), 1293, 2007
  21. Baba AA, Adekola FA, J. Saudi Chem. Soc., 16, 377, 2012
  22. Ismail AA, Ali EA, Ibrahim, Ibrahim A, Ahmed MS, Can. J. Chem. Eng., 82(6), 1296, 2004
  23. Senanayake G, Hydrometallurgy, 73, 215, 2004
  24. Park KH, Mohapatra D, Nam CW, Kim HI, Korean J. Chem. Eng., 24(5), 835, 2007
  25. Tekin T, Bayramoglu M, Hydrometallurgy, 32, 9, 1993
  26. Chimentao RJ, Lorente E, Gispert-Guirado F, Medina F, Lopez F, Carbohydr. Polym., 111, 116, 2014
  27. Sannigrahi P, Ragauskas AJ, Miller SJ, Bioenerg. Res., 1, 205, 2008
  28. Pandey KK, J. Appl. Polym. Sci., 71(12), 1969, 1999
  29. Abidi N, Cabrales L, Haigler CH, Carbohydr. Polym., 100, 9, 2014
  30. Stehfest K, Toepel J, Wilhelm, Plant Physiol. Bioch., 43, 717, 2005
  31. Satyamurthy P, Vigneshwaran N, Enzyme Microb. Technol., 52(1), 20, 2013
  32. Qian YJ, Zuo CJ, Tan H, He JH, Energy, 32(3), 196, 2007