Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.4, 489-495, 2015
대기오염제어를 위한 생물살수여과법에서 물질전달 Model과 계수에 관한 연구
Mass Transfer Model and Coefficient on Biotrickling Filtration for Air Pollution Control
대기오염물질처리를 위한 생물살수여과법에서 물질전달현상을 이해하기 위한 선행 실험결과를 기초로 각각의 운전조건에서 기체/액체(살수액), 기체/고체(미생물)와 액체/고체에서의 model을 이용하여 물질전달계수를 평가하였다. 생물살수여과법에서 기/액에서는 정상상태물질수지, 그리고 액/고와 기/고에서는 동적물질수지를 이용하여 물질전달 model을 확립하고 그 결과를 고찰하였다. 물질전달 model은 여과탑을 일정크기 구획하여, 각 구획에서 동적 물질수지식을 수치해석 전산코드를 이용해 계산하였다. 동적물질수지식을 이용하여 계산된 결과는 실험결과와 비교하여 생물살수여과법에서 기/액, 기/고, 액/고 각상간의 물질전달계수(KLa)를 산정하였다. 본 연구에서는 대기오염제어를 위한 생물살수여과법에서 물질전달계수를 결정하기 위한 실험방법개발과 model을 이용하여 물질전달현상을 고찰하였다.
A fundamental mathematical model for mass transfer processes has been used to understand the air pollution control process in biotrickling filtration and to evaluate the mass transfer coefficients of gas/liquid (trickling liquid), gas/solid (biomass) and liquid/solid based upon experimental results and mathematical model calculations for selected operating conditions. The mass transfer models for the utilization of the steady-state mass balance for gas/liquid, and dynamic mass balance model for gas/solid & liquid/solid in biotrickling filters were established and discussed. The mass transfer model considered the reactor to comprise finite sections, for each of which dynamic mass balances for gas/solid and liquid/solid system were solved by numerical analysis code (numerical iteration). To determine the mass transfer coefficients (KLa) of gas/liquid, gas/solid & liquid/solid in a biotrickling filter, the calculation results based upon mass balance equation was optimized to coincide with the experimental results for the selected operating conditions. Finally, this study contributed the development of experimental methods and discussed the mathematical model to determine the mass transfer coefficients in a biotrickling filtration for air pollution control.
[References]
  1. Devinny JS, Deshusses MA, Webster TS, Biofiltration for Air Pollution Control, Lewis publisher, NY(2011).
  2. Won YS, Deshusses MA, J. Korean Soc. Atmo, Environ., 19(1), 101, 2003
  3. Kosteltz AM, Finkelstein A, Sears G, “Characterization of Biofiltration System Degrading VOCs,” Paper #96-RA87B.02, Air & Waste Manage. Assoc. 89th Annual Conference and Exhibition, Pittsburgh, PA(1996).
  4. Won YS, J. Korean Ind. Eng. Chem., 16(4), 474, 2005
  5. Deshusses MA, Cox HHJ, Encyclopaedia Environmental Microbiology, McGraw Hill, NY(2012).
  6. Won YS, Jo WK, Korean Chem. Eng. Res., 53(4), 482, 2015
  7. Kennes C, Veiga MC, Bioreactors for Waste Gas Treatment, Kluwer Academic Publishers, Boston(2012).
  8. Zhu X, Alonso C, Suidan MT, Water Sci. Technol., 38(3), 315, 1998
  9. Zhu X, Suidan MT, Alonso C, Water Sci. Technol., 43(1), 285, 2001
  10. Pedersen AR, Arvin E, Water Res., 31(8), 1963, 1997
  11. Pedersen AR, Arvin E, Water Sci. Technol., 36(1), 69, 1997
  12. Alonso C, Zhu X, Suidan MT, Kim BR, Kim BJ, Water Sci. Technol., 39(7), 139, 1999
  13. Deshusses MA, Hamer G, Dunn IJ, Environ. Sci. Technol., 29, 1048, 1995
  14. Deshusses MA, Hamer G, Dunn IJ, Environ. Sci. Technol., 29, 1059, 1995
  15. Deshusses MA, Hamer G, Dunn IJ, Biotechnol. Bioeng., 49(5), 587, 1996
  16. Zarook SM, Shaikh AA, Ansar Z, Chem. Eng. Sci., 52(21), 4135, 1997
  17. Shareefdeen Z, Baltzis BC, Biotechnol. Bioeng., 41, 512, 1993
  18. Baltzis BC, Mpanias CJ, Bhattacharya S, Biotechnol. Bioeng., 72(4), 389, 2001
  19. Zarook SM, Shaikh AA, Ansar Z, Chem. Eng. Sci., 52(5), 759, 1997
  20. Berkeley Madonna(Version 8.0) User’s Guide, UC Berkeley(2001).
  21. Won YS, Korean J. Chem. Eng., 29(12), 1745, 2012
  22. Won YS, Korean Chem. Eng. Res., 49(5), 510, 2011