Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.4, 478-481, 2015
고체 산촉매를 이용한 창자파래로부터 환원당 생산에 미치는 인자들의 영향
Effect of Reaction Factors on Reducing Sugar Production from Enteromorpha intestinalis Using Solid Acid Catalyst
본 연구는 거대 녹조류인 창자파래(Enteromorpha intestinalis)를 대상으로 고체 산촉매를 사용하여 환원당을 생산하고자 하였다. 가수분해 반응은 고액비, 촉매량, 반응온도와 반응시간을 대상으로 최적화하였다. 결과적으로 액/고비 7.5, 반응온도 140 oC, 촉매량 15%, 그리고 반응시간 2 hr에서 7.74 g/L의 환원당을 얻었다. 반면에 단지 0.13 g/L의 5-HMF만이 생성되었다. 이로부터 고체 산촉매를 이용한 해양 바이오매스 자원의 가능성을 확인하였다.
In this study, the hydrolysis of green macro-algae Enteromorpha intestinalis using solid acid catalyst was conducted to obtain total reducing sugar. The hydrolysis was optimized with four reaction parameters of liquid-to-solid (L/S) ratio, catalyst amount, reaction temperature, and reaction time. As a optimized result, the highest TRS of 7.74 g/L was obtained under condition of 7.5 L/S ratio, 140 oC, 15% catalyst amount and 2 hr. By the way, at this condition, only 0.13 g/L 5-HMF was detected. The solid acid-catalyzed hydrolysis of marine resources had the potential in the field of bioenergy.
[References]
  1. Jeong GT, Park DH, KSBB J., 26, 341, 2011
  2. Jeong GT, Park DH, Appl. Biochem. Biotechnol., 161(1-8), 41, 2010
  3. Park DH, Jeong GT, Korean Chem. Eng. Res., 51(1), 106, 2013
  4. Jeong GT, Park DH, KSBB J., 29(1), 22, 2014
  5. Chandini SK, Ganesan P, Suresh PV, Bhaskar N, J. Food Sci. Technol., 45, 1, 2008
  6. Han YB, “Edible Seaweed II - Components and Biological Activity,” pp. 262-269, Korea University Press, Korea(2010).
  7. Jang JS, Cho Y, Jeong GT, Kim SK, Bioprocess. Biosyst. Eng., 35, 11, 2012
  8. Meinita MDN, Hong YK, Jeong GT, Bioprocess. Biosyst. Eng., 35, 123, 2012
  9. Kang KE, Park DH, Jeong GT, Bioresour. Technol., 132, 160, 2013
  10. Jeong GT, Kim SK, Park DH, Biotechnol. Bioeng., 18, 88, 2013
  11. Kim DH, Lee SB, Jeong GT, Bioresour. Technol., 161, 348, 2014
  12. Won KY, Kim YS, Oh KK, Korean J. Chem. Eng., 29(10), 1341, 2012
  13. Song BB, Kim SK, Jeong GT, KSBB J., 26, 347, 2011
  14. Lee SM, Kim JH, Cho HY, Joo H, Lee JH, J. Korean Ind. Eng. Chem., 20(5), 517, 2009
  15. Yeon JH, Seo HB, Oh SH, Choi WS, Kang DH, Lee HY, Jung KH, KSBB J., 25, 283, 2010
  16. Tan IS, Lam MK, Lee KT, Carbohydr. Polym., 94, 561, 2013
  17. Pal R, Sarkar T, Khasnobis S, “Amberlyst-15 in Organic Synthesis,” ARKIVOC I, 570-609(2012).
  18. Kadam ST, Thirupathi P, Kim SS, Tetrahedron, 65(50), 10383, 2009
  19. Liu Y, Wei M, Gao L, Li X, Mao L, Korean J. Chem. Eng., 30(5), 1039, 2013
  20. Ameri E, Moheb A, Roodpeyma S, Korean J. Chem. Eng., 28(7), 1593, 2011
  21. Lee HJ, Seung D, Filimonov IN, Kim H, Korean J. Chem. Eng., 28(3), 756, 2011
  22. http://www.sigmaaldrich.com/Graphics/COfAInfo/SigmaSAPQM/SPEC/21/216380/216380- BULK_SIAL_.pdf.
  23. Miller GL, Anal. Chem., 31, 426, 1959
  24. Jeong GT, Korean J. Microbiol. Biotechnol., 42(2), 177, 2014