Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.4, 468-471, 2015
빛의 조사 기간에 따른 세 가지 미세조류의 지질 함량 변화와 균체의 당화 전환율 비교
An Analysis of Lipid Contents Produced from Three Different Microalgae Depending on the Lighting Period and Their Saccharification Conversion
본 연구에서는 빛의 조사기간을 변화시켜 세 종류의 미세조류(Nanochloris, Dunaliella tertiolecta, Tetraselmis)를 배양하고 이들의 성장속도 및 지질 함량을 분석하였다. 빛의 조사기간은 한국의 여름철과 겨울철의 일조시간을 반영해 각각 14.5시간과 7시간으로 설정하였다. 또한, 지질 추출 후 남은 미세조류를 당화시켜 포도당 전환율을 비교함으로써 미세조류의 바이오매스로써의 가능성을 가늠하고자 하였다. 실험 결과 D. tertiolecta가 다른 두 종의 미세조류보다 빛의 조사기간이 7시간일 때 최대 38% 높은 성장속도를 나타냈으며 지질함량은 최대 43.6% 정도 높은 결과를 보였다. 포도당으로의 당화 전환율도 D. tertiolecta가 최대 22% 높은 결과를 보였다.
Microalgae have the advantages of being able to utilize the solar energy and culturing at a low cost. In particular, microalgae have a great potential in the production of biodiesel due to the high lipid content. Lipids produced from microalgae are converted to fatty acid methyl ester (FAME) by trans-esterification reaction and FAME is called a biodiesel in general. In addition, microalgae can also be utilized as a substrate for ethanol fermentation after saccharification reaction. In this study, three types of microalgae (Nanochloris, Dunaliella tertiolecta, Tetraselmis) were cultured and their lipid contents were compared. In addition, the effects of lighting period on the growth rate and lipid content were studied. Finally, the amounts of glucose produced from each saccharified microalgae were investigated. As a result, we demonstrated that D. tertiolecta has 43.6% higher lipid content and 22% higher glucose conversion than two others.
[References]
  1. Minowa T, Yokoyama S, Kishimoto M, Okakura T, Fuel, 74(12), 1735, 1995
  2. Jo BH, Cha HJ, KSBB, 25, 109, 2010
  3. Meher L, Vidyasagar D, Naik S, Renew. Sust. Energ. Rev., 10(3), 248, 2006
  4. Marchetti JM, Miguel VU, Errazu AF, Renew. Sust. Energ. Rev., 11(6), 1300, 2007
  5. Canakci M, Bioresour. Technol., 98(1), 183, 2007
  6. Fukuda H, Kondo A, Noda H, J. Biosci. Bioeng., 92(5), 405, 2001
  7. Mata TM, Martins AA, Caetano NS, Renew. Sust. Energ. Rev., 14(1), 217, 2010
  8. Wahlen BD, Willis RM, Seefeldt LC, Bioresour. Technol., 102(3), 2724, 2011
  9. Nigam PS, Singh A, Prog. Energy Combust. Sci., 37(1), 52, 2011
  10. Spolaore P, Joannis-Cassan C, Duran E, Isambert A, J. Biosci. Bioeng., 101(2), 87, 2006
  11. Kim DG, Choi YE, Korean Chem. Eng. Res., 52(1), 8, 2014
  12. John RP, Anisha GS, Nampoothiri KM, Pandey A, Bioresour. Technol., 102(1), 186, 2011
  13. Li X, Hu HY, Gan K, Sun YX, Bioresour. Technol., 101(14), 5494, 2010
  14. Yoo SJ, Oh SK, Lee JM, Korean Chem. Eng. Res., 51(1), 87, 2013
  15. Renaud SM, Thinh LV, Lambrinidis G, Parry DL, Aquaculture, 211, 195, 2002
  16. Sharma YC, Singh B, Upadhyay SN, Fuel, 87(12), 2355, 2008
  17. Demirbas A, Demirbas MF, Energy Conv. Manag., 52(1), 163, 2011
  18. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Selbert M, Darzins A, Plant J., 54, 621, 2008