Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.4, 407-411, 2015
공급가스 및 스윕가스 유량에 따른 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 분리막의 산소투과특성
Effect of Flow Rates of Feed and Sweep Gas on Oxygen Permeation Properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Membrane
고상반응법으로 제조된 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 조성의 페롭스카이트 산화물 상용분말을 압축 성형 후 1100 oC에서 2시간 동안 소결한 후, 1.0 mm의 두께를 가지는 평판형 분리막을 제조하였다. Ba0.5Sr0.5Co0.8Fe0.2O3-δ 분리막의 산소투과량은 온도와 산소분압이 증가함에 따라 증가하였고, 산소투과의 활성화에너지는 산소분압이 증가할수록 높은 값을 나타내었다. 950 oC에서 공급가스와 스윕가스의 유량 변화에 따른 투과 특성 분석 결과, 유량이 증가할수록 높은 산소투과량을 보였으며, 공급가스보다 스윕가스의 유량에 따라 크게 변함을 확인하였다.
Dense ceramic membranes have been prepared using the commercial perovsikite Ba0.5Sr0.5Co0.8Fe0.2O3-δ, powders synthesized by the solid state reaction method. The as-synthesized powders were compressed into disks with 1.0 mm of thickness and the disk was sintered at 1,100 oC for 2 hr. The oxygen permeation flux of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane increased with the increasing temperature and oxygen partial pressure. The activation energy for oxygen permeation was increased with the increasing oxygen partial pressure. Oxygen permeation flux at 950 oC were measured at various flow rates of feed and sweep gas. It has been demonstrated that oxygen permeability increased at elevated flow rates of both gases, but the sweep gas is more influential.
[References]
  1. Rubin E, MeYer L, Coninck HD, “IPCC Special Report on Carbon dioxide Capture and Storage,” Cambridge University Press, New York(2005).
  2. Jeon SI, Park JH, Kim JP, Sim WJ, Lee YT, Korean Chem. Eng. Res., 50(1), 1, 2012
  3. Lim KT, Cho TL, Lee KS, Woo SK, Park KB, Kim JW, J. Korean. Ceram. Soc., 38, 787, 2001
  4. Kim JP, Park JH, Kim KY, J. Energy. Climate Change, 2, 75, 2007
  5. Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, da Costa JCD, J. Membr. Sci., 320(1-2), 13, 2008
  6. Son SH, Kim JP, Park JH, Lee YT, Korean Chem. Eng. Res., 47(3), 310, 2009
  7. Moydinov RY, Popova MN, Kaul AR, Doklady Chemistry, 402, 88, 2005
  8. Tan XY, Wang ZG, Liu H, Liu SM, J. Membr. Sci., 324(1-2), 128, 2008
  9. Kusaba H, Shibata Y, Sasaki K, Teraoka Y, Solid State Ion., 177(26-32), 2249, 2006
  10. Teraoka Y, Nobunaga T, Okamoto K, Miur N, Yamazoe N, Solid State Ion., 48, 207, 1991
  11. Han M, Song S, Zhang P, Singhal SC, J. Membr. Sci., 415-416, 654, 2012
  12. Diethelm S, Van herle J, Middleton PH, Favrat D, J. Power Sources, 118(1-2), 270, 2003
  13. Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX, J. Membr. Sci., 172(1-2), 177, 2000
  14. Liu LM, Lee TH, Qiu L, Yang YL, Jacobson AJ, Mater. Res. Bull., 31(1), 29, 1996
  15. Shao ZP, Xiong GX, Tong JH, Dong H, Yang WS, Sep. Purif. Technol., 25(1-3), 419, 2001
  16. Park JH, Kim JP, Son SH, Energy Procedia, 369, 1, 2009
  17. Kim S, Yang YL, Christoffersen R, Jacobson AJ, Solid State Ion., 104(1-2), 57, 1997